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PREFACE

WISHFUL THINKING has probably always complicated our rela-
tions with technology, but it is safe to assert that before the
computer, and before the bomb, the complications weren’t quite
as dangerous as they are today. Nor was the wishful thinking
as fantastic. Consider a typical military wish list:

As a result of a series of advances in artificial intelligence, com-
puter science, and microelectronics, we stand at the threshold
of a new generation of computing technology having unprece-
dented capabilities. . . . For example, instead of fielding simple
guided missiles or remotely piloted vehicles, we might launch
completely autonomous land, sea, and air vehicles capable of
complex, far-ranging reconnaissance and attack missions.?

Military managers, like their civilian brethren, have long
dreamed of autonomous machines, freed of their reliance on
fallible, contentious humanity, able finally to go it alone. Now
the speed of computerized warfare has added new urgency to
the pursuit of machine intelligence. After all, nuclear attack
times are down to seven or eight minutes, and computers, more
alert, faster, more constant than we human beings, seem the
obvious solution. Thus, faith in the perfectibility of computer

ix
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intelligence has become a means of avoiding the truth of our
circumstances. With it comes a temptation to avoid confronting
the perils of our existence by handing over our fate to electronic
machines.

That dream may become a reality in the Strategic Defense
Initiative (“Star Wars”). Describing the system, Time writes in
its March 11, 1985, issue:

Humans would make the key strategic decisions in advance,
determining under what conditions the missile defense would
start firing, and devise a computer system that could translate
those decisions into a program. In the end the defensive response
would be out of human hands: it would be activated by computer
before U.S. commanders even knew that a battle had begun.

Today, after twenty years of support for artificial intelligence
(AI) research, the military is moving to call in its chips. But
does the military hold the cards to realize its hopes? It does
not. The human mind has the upper hand over any machine.
The “series of advances” upon which hopes for “autonomous
computer systems” depend have been greatly exaggerated, with
serious negative consequences.

At present, large-scale efforts are under way to develop artifi-
cial intelligence systems capable of conversing fluidly in natural
language, of providing expert medical advice, of exhibiting com-
mon sense, of functioning autonomously in critical military situa-
tions. Debates about the political, moral, ethical, and social
consequences of such systems are each year more prominent
than the last, yet they still take place within a haze of misinforma-
tion about the genuine potential of machine intelligence. Marvin
Minsky, for example, recently said:

Today our robots are like boys. They do only the simple things
they’re programmed to. But clearly they’re about to cross the
edgeless line past which they’ll do the things we are programmed
to. . . . What will happen when we face new options in our
work and home, where more intelligent machines can better
do the things we like to do? What kind of minds and personalities
should we dispense to them? What kind of rights and privileges
should we withhold from them? Are we ready to face such
questionsr?

Even Joseph Weizenbaum, whose cri de coeur is still the best-
known attack on the computerization of human affairs, as-
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sumes the eventual success of the artificial intelligence enter-
prise: “It is technically feasible to build a computer system that
will interview patients applying for help at a psychiatric out-
patient clinic and will produce their psychological profiles
complete with charts, graphs, and natural-language commen-
tary.”3

Our goal here is not to take up the rationality or irrationality
of the arms race or the social problems posed by automation.
Those are concerns for society as a whole, and we claim no
special expertise in evaluating them. Our intention is more mod-
est but more basic. Despite what you may have read in maga-
zines and newspapers, regardless of what your congressman was
told when he voted on the Strategic Computing Plan,
twenty-five years of artificial intelligence research has lived up
to very few of its promises and has failed to yield any evidence
that it ever will. The time has come to ask what has gone wrong
and what we can reasonably expect from computer intelligence.
How closely can computers processing facts and making infer-
ences approach human intelligence? How can we profitably use
the intelligence that can be given to them? What are the risks
of enthusiastic and ambitious attempts to redefine our intelli-
gence in their terms, of delegating to computers key decision-
making powers, of adapting ourselves to the educational and
business practices attuned to mechanized reason?

In short, we want to put the debate about the computer in
perspective by clearing the air of false optimism and unrealistic
expectations. The debate about what computers should do is
properly about social values and institutional forms. But before
we can profitably discuss what computers should do we have
to be clear about what they can do. Our bottom line is that
computers as reasoning machines can’t match human intuition
and expertise, so in determining what computers should do we
have to contrast their capacities with the more generous gifts
possessed by the human mind.

Too often, computer enthusiasm leads to a simplistic view
of human skill and expertise. To maintain the momentum of
automation, to carry its thrust from the production line and
office to the board room and classroom, computer boosters lean
on theories that emphasize those aspects of expertise that most
lend themselves to computerization. To the “knowledge engi-
neers,” skill and expertise are equivalent to the “rules of thumb”
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that human experts articulate when asked how they solve prob-
lems.

We contend that those rules, though they lead to a view of
expertise that supports optimism for the future of machine intel-
ligence, do fundamental violence to the real nature of human
intelligence and expertise. To safeguard both, we shall propose
a nonmechanistic model of human skill, one that we claim:

+ Explains the failure of existing Al systems to capture expert
human judgment

* Predicts that failure will continue until intelligence ceases to
be understood as abstract reason and computers cease to be
used as reasoning machines

+ Warns against attempts at too zealous computerization in fields
such as education and management, which, while not Al
proper, fall prey to similar misconceptions

We are at the same time in no way Luddites.* It seems obvious
to us that there are tasks for which computers are appropriate
and even indispensable. Computers are more deliberate, more
precise, and less prone to exhaustion and error than the most
caring and conscientious human being. Examples of computers
as useful tools are numerous and easy to come by:

* As word processors, computers are changing our methods and
styles of writing—making composition more responsive to our
desires. To write this book we used the UNIX operating system,
two VAX computers, and phone lines connecting our offices and
our homes.

- Computer assisted design (CAD) is transforming engineering,
making design more efficient and more flexible. At General Mo-
tors 42 percent of drafting is currently done on a screen, and
in the next decade that figure will approach 100 percent. Design-
ers will be able to summon up cross-sectional views from any
perspective within solid objects, and from an object’s dimensions
and properties to estimate its strength and simulate its reaction
to various kinds of stress.

+ As telecommunications devices, computers are transforming
our notions of collaboration and are beginning to change the
ways we communicate written information. Excerpts of our book
were sent to friends around the country on the ARPANET, which
brought their criticisms to our screens the very same day. Such
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exchanges would be common if personal computers could com-
municate easily, but so far computer manufacturers have offered
their machines with operating systems that are either proprie-
tary or shared by only a few manufacturers. Now, however,
TOPS, a local area networking system developed by Centram
West, makes possible a “simultaneous translation” between dif-
ferent machines so that all data and other computer resources
can be fully shared.

* As aids for the handicapped, computers offer incredible new
possibilities. Already they’ve radically increased the abilities of
seriously disabled children to function in normal school environ-
ments, by allowing, for example, students to work on microcom-
puters equipped with special input devices. Reading machines
for the blind are already available, as are machines that help
the deaf learn to speak, and artificial vision systems, which trans-
late a TV signal into tactile images on the user’s back, are in
development.

Tools enlarge our capacities and provide us with a range of
abilities we could not otherwise claim. But computers are more
than tools. When programmed to do so, they can automatically
store, modify, and access vast files of data, and do so more quickly
and more accurately than we ourselves. Here computers act
not as tools but as automatic data-processing devices: keeping
records, shuffling funds, maintaining inventories, optimizing rail-
road traffic, and coordinating airline reservations. Moreover,
when problems can be translated into mathematical representa-
tions in objectively defined ways that require no subjective as-
sessments, computers can take over functions previously seen
as the work of management. That has happened, for example,
in oil refineries, where computers decide how much crude oil
of various grades to blend to produce a desired mix of final
outputs.

But we shall focus neither on computers as tools nor on com-
puters as automatic data processors. Our concern is the mis-
guided effort to enlarge the capacities of data-processing systems
to the point where more sophisticated skills, skills involving not
only calculation but judgment as well, can be captured within
electronic circuits. It is in this effort to create artificial intelli-
gence that the nature, problems, and limits of mechanized rea-
son are most clearly evident.
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Computers are certainly more precise and more predictable
than we, but precision and predictability are not what human
intelligence is about. Human beings have other strengths, and
here we do not mean just the shifting moods and subtle empathy
usually ceded to humanity by even the most hard-line technolo-
gists. Human emotional life remains unique, to be sure, but what
is more important is our ability to recognize, to synthesize, to
intuit. There are good reasons to believe that those abilities as
well are rooted in processes altogether different from the calcula-
tive reason of computer programs, and we shall explain, as best
we can, what those processes are.

By so doing, we want to raise two warning flags: one against
placing excessive faith in the possibility of mechanizing human
skill and expertise, and the second against the increasing ten-
dency, noted by Sherry Turkle in her book The Second Self,
to regard ourselves as abstract reasoning machines. The truth
is that human intelligence can never be replaced with machine
intelligence simply because we are not ourselves “thinking ma-
chines” in the sense in which that term is commonly understood.
Each of us has, and uses every day, a power of intuitive intelli-
gence that enables us to understand, to speak, and to cope skill-
fully with our everyday environment. We must learn what this
power is, how it works, where it fits into our lives, and how it
can be preserved and developed.

We are not proposing to exalt the intuitive at the expense
of the analytic abilities so highly developed in our Western cul-
ture. Zen Buddhism, Jungian mysticism, and other attempts to
bypass or quiet the analytic mind have their place, but our book
is not a defense of them. The hoary old split between the mystical
and the analytic will not do in the computer age, for neither
pole of that often misleading dualism names the ordinary, non-
mystical intuition that we believe is the core of human intelli-
gence and skill. Further, we shall show that analysis and intuition
work together in the human mind. Although intuition is the
final fruit of skill acquisition, analytic thinking is necessary for
beginners learning a new skill. It is also useful at the highest
levels of expertise, where it can sharpen and clarify intuitive
insights.

The recognition that human expertise resists capture in for-
mal rules has real consequences for our conception of the proper
role of computers in the making of expert decisions. At the Uni-
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versity of California Medical Center in San Francisco researchers
have developed a system we think is on the right track. Rather
than trying to embody the expertise of human doctors in an
automated system, Dr. Marsden Blois and his co-workers have
developed RECONSIDER, a “diagnostic prompting system,”
which addresses the real-world problem that “the most frequent
diagnostic mistake is oversight.” RECONSIDER is a simple sys-
tem, far less sexy than well publicized expert systems like MYCIN
or INTERNIST. It is a straightforward interactive encyclopedia
designed to help the doctor determine the patient’s disease.
The doctor merely types in the symptoms, and the system pre-
sents a comprehensive list of associated diseases. Plausible diag-
noses are ranked in order of their probability, and adding more
symptoms reorders the list. The doctor uses RECONSIDER to
avoid jumping to conclusions and to remind himself of other
possibilities. But in the end, it remains the task of the doctor
to make the diagnosis.

As used in Al computers are analytic engines. They can apply
rules and make logical inferences at great speed and with uner-
ring accuracy. To exactly the extent that rules and inferences
have a crucial place in everyday human affairs, the computer
has a place in improving and implementing logical thought.
Since the extent is limited, so also is the place of the analytic
engine. By recognizing limits we shall find a greater clarity—
about what we are and where we are going—than we could
ever discern within the entrepreneurial haze of Al rhetoric.
And we shall find as well that our intuitive expertise, irreducible
to rules, casts the weight on the side of the human mind as
we try to establish a new balance between ourselves and our
ever more powerful, yet perhaps perpetually limited, machines.
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PROLOGUE

“THE HEART HAS ITS REASONS
THAT REASON DOEs NoOT KNow”

IN THE EARLY SIXTIES, when I* began to teach philosophy at
M.LT., I had never seen a real-world digital computer, though
I had read about robots in science fiction. I was in for a surprise.
When I tried to explain to my students the speculations of various
philosophers from Plato to Immanuel Kant to Bertrand Russell
about how perception, understanding, and meaning may oper-
ate, my students told me that such philosophy was now passé
thanks to the development of the digital computer. Across the
street, the students assured me, the robot project under the
direction of Marvin Minsky was making real progress on a genu-
ine research program aimed at programming a machine to per-
ceive, understand, and even coordinate perception and
understanding with movement. Philosophers, it seemed, had
been wasting their time for two thousand years and had ﬁnally
been replaced by serious researchers.

Such news was confusing and unsettling. On the one hand,
I was no traditional philosopher. I knew that philosophers from

* This prologue, like the rest of this book, was written jointly by Hubert and
Stuart Dreyfus. For stylistic reasons, however, we have chosen to present it
from Hubert’s point of view.
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the time of Socrates and Plato had been trying to find the defini-
tions and logical relations underlying perception and under-
standing without notable success, and yet went on insisting that
such rules must nonetheless exist in the mind. I knew that Tho-
mas Hobbes had said around 1600 that reasoning is really reckon-
ing with parcels—what my students at M.I.T. had begun to call
calculating with bits.

I had come to think of the whole tradition I was teaching
as a see-saw battle between rationalist philosophers and philoso-
phers who tried to do justice to common sense. It started with
Plato, who named what his teacher, Socrates, was doing “philoso-
phy”—the love of wisdom—and followed Socrates in thinking
of wisdom as whatever could be spelled out in explicit principles
or definitions. Socrates had not been able to find any definitions
of his favorite concerns, such as piety, justice, and knowledge,
that would stand up to sustained argument, so he concluded
he knew nothing. Plato, however, loved mathematics and
thought that if one put aside cooks, craftsmen, poets, and all
the others acting on mere skill and intuition, it would be possible
to find a whole system of theoretical, objective principles, which,
like the truths of geometry, could be defended in rational argu-
ment and used to explain nature and justify actions. It was this
claim that nurtured the main line of our Western philosophical
tradition. After all, when one has to make important decisions
in which lives may be at stake, one does not want to act on
hunches or hearsay but on principles that can be laid out and
justified to oneself and one’s peers.

Yet each time a great philosopher came along with the claim
that he had found the basic principles underlying all intelligible
order, some other thinker would call the whole enterprise into
question. Plato’s famous protégé, Aristotle, while accepting a
great deal of Plato’s argument, tried to stay close to everyday
experience and so had important doubts. He pointed out that
underlying all explicit knowledge of the sort Plato championed
there had to be a kind of judgment that enabled experienced
practitioners in any domain to apply their principles to particular
cases. So, Aristotle said, if you have an ethical problem, do not
ask a philosopher what to do; ask a wise old man.

After Aristotle and Plato the breach widened. Galileo, an
heir of Plato’s rationalism, showed that Plato was at least half
right, that the idea of finding abstract objective laws relating
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elements worked for nature. Descartes generalized that success
and claimed that one could analyze any problem into its basic,
isolatable elements, and explain the complex in terms of rule-
like combinations of such primitives. Basic principles could be
deduced by asking how a perfectly rational and good God would
organize the world, and how he would want man to act. All
knowledge and action could then be deduced from those first
principles.

Descartes’s grand scheme, in which man played God, gave
rise to Pascal, who was himself a great mathematician and even
built a calculator, but who was untainted by the tradition. He
argued, opposing Descartes, that in matters of perception, every-
day knowledge, and action, finite human beings had no access
to basic elements and rational first principles. Instead one had
to assume the risk of basing one’s theories and actions on the
ambiguous background of custom and experience. In deciding
what to do, Pascal said, one had no choice but to trust one’s
emotions and intuitions. As he put it, “The heart has its reasons
that reason does not know.”

Of course, that assertion did not end the debate. The next
round pitted Leibniz, who is considered the greatest of the sev-
enteenth-century rationalists, against the great empiricist David
Hume. Leibniz, a mathematician who is credited with inventing
binary numbers, took Plato’s and Descartes’s project one step
.further and claimed that even those skills Plato had rejected
as merely a kind of knack or “knowing how” could be salvaged
as “knowing that.” As he put it:

[TThe most important observations and turns of skill in all sorts of
trades and professions are as yet unwritten. This fact is proved
by experience when, passing from theory to practice, we desire
to accomplish something. Of course, we can also write up this prac-
tice, since it is at bottom just another theory more complex and
particular . . . .1

David Hume, a historian, again came to the defense of concrete
common sense. He held that knowledge was not grounded in
principles and theories. Rather, knowledge was based on habits
formed by successful coping. In ethics he held that we cannot
justify our actions but have to trust our natural moral feelings.
But even Hume said experience could be analyzed into basic
elements.
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Kant, probably the greatest philosopher of them all, thought
that both Hume and Leibniz were partly right. Hume was right
in criticizing Descartes, Leibniz, and all metaphysicians who
claimed the ability to read God’s mind. But the rationalists were
on the right track. One could nonetheless find basic principles
that applied to our world by understanding the rational human
mind. And Kant had a new idea as to how the mind worked.
He held that all concepts were really rules. For example, the
concept for dog is something like the rule: If it has four legs,
barks, and wags its tail, then it’s a dog. After Kant the rule-
following view of the mind was worked out in greater and
greater detail. Finally Edmund Husserl, who can be regarded
as the father of the information-processing model of the mind,
argued that concepts were hierarchies of rules, rules which con-
tained other rules under them. For example, the rule for recog-
nizing dogs contained a subrule for recognizing tails. Husserl
also saw that such rules would have to tell us not about any
particular dog, or dogs in general, but about the typical dog.
All the basic ideas used by Minsky and his students of artificial
intelligence were in place.?

I saw the history of philosophy in those terms because the
contemporary thinkers I preferred and whose books I taught
in my courses—Martin Heidegger, Maurice Merleau-Ponty, and
Ludwig Wittgenstein—like Pascal, set themselves against both
sides of our philosophical tradition. These thinkers tried simply
to describe everyday experience. They came to the conclusion
that perception could not be explained by the application of
rules to basic features. Human understanding was a skill akin
to knowing how to find one’s way about in the world, rather
than knowing a lot of facts and rules for relating them. Our
basic understanding was thus a knowing how rather than a
knowing that.

For these thinkers, philosophy was finished all right, since
its attempt to treat intelligence as rational or at least analytic
had never worked. No philosopher had ever been able to propose
a single rule or analysis for which another philosopher had not
succeeded in finding a counter-example. Thus I was prepared
and pleased to hear the news from the robot laboratory that
philosophy was finished—replaced by a concrete research pro-
gram.

But if my favorite thinkers (who might be called antiphiloso-
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phers) were right, the new computer approach should not work
either, based as it was on using programs or rules to impart
“knowledge” to machines. So I confidently continued to teach
Merleau-Ponty’s claim that perception and understanding are
based in our capacity for picking up not rules, but flexible styles
of behavior. For example, someone who knows how to drive a
car with a shift on the steering column can easily transfer the
skill to a shift on the floor, even though the rule describing
the sequence of movements required would be very different.
Explaining Heidegger, I continued to assert that we are able
to understand what a chair or a hammer is only because it fits
into a whole set of cultural practices in which we grow up and
with which we gradually become familiar. As I taught I won-
dered more and more how computers, which have no bodies,
no childhood, and no cultural practices but are disembodied,
fully formed, nonsocial, purely analytic engines, could be intelli-
gent at all. Clearly, if the word I was getting from the robot
laboratory was right, then the antiphilosophers I was teaching
were wrong. I realized that if I was going to go on teaching
those antiphilosophers to skeptical students, whom I now
thought of as the heirs of Plato, Kant, and Husserl, I had better
find out just how intelligent computers were and how intelligent
they were likely to become.

I wrote all this to my brother, Stuart, who was at the RAND
Corporation programming JOHNNIAC, an early prototype com-
puter designed by John Von Neumann, and Stuart conveyed
it to RAND’s token philosopher, Bill Maron. The time must have
been right for such an encounter, since Maron told Stuart that
his brother too had just sent a letter to advise RAND that it
should not invest time and money in the new field of computer
intelligence before someone studied the work of Merleau-Ponty.
Two months later I was at RAND, hired as a consultant to evalu-
ate their pioneering work in what was then called Cognitive
Simulation (CS). CS was the first phase of what I now recognize
as the four phases that have come to make up the history of
the attempt to make intelligent machines.

When 1 arrived at RAND in the summer of 1964, Allen
Newell, Herbert Simon, and Cliff Shaw (henceforth referred to
as NSS) had recently finished the important work that was to
launch machine intelligence research on its roller coaster career.
Before NSS the digital computer had proved a great boon in
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solving numerical problems too complicated and time-consum-
ing for human mathematicians, and so it was generally consid-
ered merely a very powerful and useful number-crunching
device. While it was recognized that a computer could manipu-
late symbols that represented entities other than numbers, Ne-
well and Simon were among the first to use the symbols to stand
for real-world objects such as words, pieces on a chess board,
or features of a picture.

NSS got people to think out loud as they tried to solve logic
problems or other puzzles. Analyzing the way students pro-
ceeded to solve such problems, Simon and Newell noted that
their subjects tended to use rules or shortcuts that were not
universally correct but that often helped, even if they sometimes
failed. Such a rule of thumb might be, for example: Always try
to substitute a shorter expression for a longer one. Simon and
Newell decided to try to simulate that type of analytic problem-
solving on the RAND computer. They coined the term “heuristic
program” to distinguish the programs using such shortcuts from
those that are guaranteed to work—so-called algorithmic pro-
grams, which follow a systematic method guaranteed to deliver
a solution but sometimes become unwieldy when dealing with
large practical problems.

The notion of a rule of practice provided a breakthrough
for those looking for a way to program computers to exhibit
problem-solving ability. With this method NSS succeeded in pro-
gramming the computer to solve several puzzles. They then
abstracted the general principles they were using and wrote a
program for solving a whole range of such problems, which they
called the General Problem Solver (GPS).

The mood at RAND was even more enthusiastic than at
M.LT., as Newell and Simon announced that they had solved
many of the problems that had plagued philosophers from Plato
to the present. Not just understanding but even learning and
intuition were at last about to be understood:

We have begun to learn how to use computers to solve problems,
where we do not have systematic and efficient computational algo-
rithms. And we now know, at least in a limited area, not only how
to program computers to perform such problem-solving activities
successfully; we know also how to program computers to learn to
do these things.

In short, we now have the elements of a theory of heuristic
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(as contrasted with algorithmic) problem solving; and we can use
this theory both to understand human heuristic processes and to
simulate such processes with digital computers. Intuition, insight,
and learning are no longer exclusive possessions of human beings:
any large high-speed computer can be programmed to exhibit them
also.?

Work on Cognitive Simulation at RAND was in its manic
phase. NSS were producing papers as fast as they could get the
computer to manipulate symbols, and it appeared that Newell
and Simon were well on their way to fulfilling the prediction
they had made in 1958 that “in a visible future . . . the range
of problems [computers] can handle will be coextensive with
the range to which the human mind has been applied.”

I began reading NSS’s landmark papers with a mixture of
excitement and fear. Perhaps Hobbes, Kant, and Husserl were
right after all, and the human mind was an analytic engine.
But then what about the seemingly plausible arguments of
Merleau-Ponty, Heidegger, and Wittgenstein, which I had come
to accept? As I read the RAND papers my excitement and fear
turned to disappointment and relief. It seemed to me that NSS
had done original and impressive work in solving some specific
problems and proving machines could perform symbol manipu-
lation, but their broader claim to have cast any general light
on understanding, intuition, and learning was not supported by
their actual research.

The idea current at RAND at that time—an idea that still
sustains artificial intelligence research in times of adversity—
was called the continuum hypothesis. As Patrick Winston, the
head of the M.L.T. Al Laboratory, put it recently: “Just as the
Wright brothers at Kitty Hawk in 1903 were on the right track
to the 747’s of today, so Al, with its attempt to formalize com-
mon-sense understanding, is on the way to fully intelligent ma-
chines.” In a report I wrote for RAND I disagreed with that
kind of optimism and concluded that, in spite of NSS’s impressive
work, an overall pattern had emerged: success with simple me-
chanical forms of information processing, then great expecta-
tions, and finally failure when confronted with more intuitive
forms of intelligence. Simon’s claims fell into place as just another
example of the phenomenon which Y. Bar-Hillel had called the
“fallacy of the successful first step.” In a talk I gave at RAND,
I compared Al to alchemy to make the point. Like the alchemists
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trying to turn lead into gold, I said, AI had fancy equipment,
a few flashy demos, and desperately eager patrons, but they
simply had not discovered the right approach to the problem.

When I finished my report and submitted it to RAND to
be distributed, I got my first taste of the unscientific character
of the field. Workers in artificial intelligence, unlike most scien-
tists, almost never acknowledge their difficulties and are highly
sensitive to criticism.> RAND usually published the conclusions
of the consultants it hired, but because I was criticizing RAND’s
cognitive simulation research, Simon and Newell insisted that
my paper was nonsense and that RAND should in no way appear
to condone it. That led to a year-long struggle within RAND
as to whether the paper should be published or suppressed.

Meanwhile, Stuart, a computer specialist, was working at
RAND with the internationally famous mathematician Richard
Bellman to develop a young discipline called operations re-
search. Workers in that area were creating mathematical models
and methods that they hoped would allow computers to deter-
mine the best possible (optimal) decisions for various problems
faced by generals, industrial planners, and public policy-makers.
Although he and Bellman believed decision problems could be
represented and solved mathematically, Stuart supported me
and insisted that the paper be published. Both he and Bellman
had long suspected that the grandiose claims and predictions
made by Simon and associates were not based on sound empirical
research. Stuart knew from his own experience as a tournament
chess player that human decision-making was an inscrutable
business, a mysterious blending of careful analysis, intuition, and
the wisdom and judgment distilled from experience. He was
therefore suspicious of the claim that a digital computer could
so easily be programmed to learn, let alone exhibit intuition
and insight; he was indignant upon learning Simon’s and
Newell’s prediction, published in 1958, that within ten years a
computer would be world chess champion.

Stuart, Bellman, and their friends finally prevailed. After a
year’s delay, my paper “Alchemy and Artificial Intelligence”
was released. The abstract of the paper reads:

Early success in programming digital computers to exhibit simple
forms of intelligent behavior, coupled with the belief that intelligent
activities differ only in their degree of complexity, have led to the
conviction that the processing underlying any cognitive perfor-
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mance can be formulated in a program and thus simulated on a
digital computer. Attempts to simulate cognitive processes on com-
puters have, however, run into greater difficulties than anticipated.
An examination of these difficulties reveals that the attempt
to analyze intelligent behavior in digital computer language system-
atically excludes three fundamental human forms of processing
(fringe consciousness, essence/accident discrimination, and ambigu-
ity tolerance). Significant developments in artificial intelligence
must await computers of an entirely different sort, of which the
only existing prototype is the little-understood human brain.®

The fears of those who tried to prevent the distribution of
the paper were justified. It was the first detailed criticism of
work in CS, and it sparked debate all over the world—at Novosi-
birsk in the USSR, in Japan, and among the top scientists at
large companies such as Bell Telephone. But it was not seriously
discussed at the principal Al centers such as M.I.T. and Carnegie-
Mellon. Indeed, at M.I.T. the rejection was so total that students
and professors working on the robot project dared not be seen
having lunch with me without risking getting into trouble with
their superiors. When Joseph Weizenbaum, the only professor
who had any doubts, wanted to discuss his concerns with me,
we had to meet at his home in the suburbs. I spent the next
semester at the Harvard Computer Laboratory, which, not being
committed to artificial intelligence, offered to make me a re-
search associate in computer science so I could continue my
investigation.

Stuart stayed at RAND working on formal models of optimal
decision-making and running them on the JOHNNIAC com-
puter, which he shared with Simon, with whom he was now
barely on speaking terms.

During those days of the infancy of operations research and
of the digital computer, the average man or woman at a cocktail
party had not heard that machines could think, learn, and create
as Simon and Newell had claimed or could be used to determine
optimal decisions for real-world problems as Stuart believed.
Hence in social situations Stuart found himself frequently called
upon to explain what he was working on at the mysterious and
supersecret RAND Corporation and how it was that computers
could become decision-makers, not merely number crunchers.
His favorite example became the problem of when to replace
one’s car. Supposing one planned to drive a car for the next



10 MIND OVER MACHINE

thirty years or so, how often should an old one be replaced by
a new? It’s simple, he would say, given a digital computer. You
estimate the costs of operating an aging car and the cost of
buying a new one; throw in other factors such as the need for
reliable performance, depreciation, and the pleasure derived
from ownership; weigh all of these factors appropriately; and
let the computer determine the most desirable sequence of deci-
sions to replace. It’s really all number crunching, after all, once
you program the appropriate facts and tradeoffs between various
factors.

One evening at a cocktail party, after this standard answer
to the customary question, an unusual thing happened. Instead
of thanking Stuart and moving on to something else more com-
prehensible, a listener innocently asked, “Oh, and is this the
way you decide when to replace your car?” “Of course not”
Stuart replied without hesitation. “That was only an example
of how to use the formal procedure. Buying a new car is for
me much too important to be left to a mathematical model.
I mull it over for awhile, and buy a new car when it feels
right.”

The next morning Stuart began to reflect upon what had
happened. How could he tell generals, businessmen, and policy-
makers that they should use a decision-making technique that
he himself wouldn’t use in his own personal life? Why did he
trust his feelings rather than his formal car replacement model?
Trying to answer the question led to this book. Hunches and
intuitions, and even systematic illusions, are the very core of
expert decision-making, so whether one seeks to use a digital
computer to model the heuristic rules behind actual problem-
solving, as Newell and Simon did, or whether one tries, like
Stuart and Richard Bellman, to find optimal algorithms, the re-
sult fails to capture the insight and ability of the expert decision-
maker. Once Stuart saw this, he saw that no matter how much
more work was done in computer simulation and operations
research, and no matter how sophisticated the rules and pro-
cedures became, such analytic abstractions would never allow
the computer to attain expertise. As Stuart put it: “There’s no
continuum. Current claims and hopes for progress in models
for making computers intelligent are like the belief that some-
one climbing a tree is making progress toward reaching the
moon.
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Thus Stuart was converted and now cautions people against
making the same first-step fallacy in operations research that I
observed in artificial intelligence. He points out that while opera-
tions research had early successes in modeling operational prob-
lems in the military and industry—how to search for a submarine
or when to reorder inventory—that is no reason to believe that
the same mathematical modeling techniques can tell experi-
enced generals what military strategies are optimal, business
executives whether to diversify their companies, or public pol-
icy-makers how to allocate their budgets. Problems involving
deep understanding built up on the basis of vast experience
will not yield—as do simple, well-defined problems that exist
in isolation from much of human experience—to formal mathe-
matical or computer analysis.

Stuart’s observations confirmed my own, so I returned to
M.LT. in the fall of 1964 convinced that the robot project had
much to learn from Heidegger, Merleau-Ponty, and Wittgen-
stein. If philosophy in the tradition of Socrates and Plato was
indeed defunct, so were its computer-oriented heirs.

Twenty years have passed since 1 first challenged the opti-
mism of the artificial intelligence community. During that time,
research in machine intelligence has taught us much about our-
selves, more by its failures than by its successes. But suddenly,
and without open debate, we have turned from the millions-
for-basic-research phase of the past twenty years to a crash devel-
opment program that will ultimately cost billions. AI spokesmen
themselves have the bulk of the responsibility. It is they who,
sometimes naively and sometimes cynically, proclaimed the
“successes” of Al and then created a bogus Japanese-U.S. “Al
gap” that, in the tradition of the phony “missile gap” and
“bomber gap,” justified the massive R&D effort of Strategic
Cornputing.

The Department of Defense’s Strategic Computing Plan of
October 19837 seeks immediate funding of more than $500 mil-
lion, the first two years of which have already been approved,
and states that “within the past few years, a series of important
advances have occurred across a wide range of areas.” It lists,
among those “advances,” expert systems with common sense
and artificial intelligence systems with natural language under-
standing. The report cites no specific recent “advances” in Al,
and you will discover as you read on that no such advances
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have occurred. The “common sense” and “natural language un-
derstanding” problems, both alleged by the Department of De-
fense’s Advanced Research Projects Agency (DARPA) to have
been solved, are closely intertwined, unsolved, and, given AI’s
current approach, probably unsolvable. Likewise, computers are
no more able today to deal intelligently with “uncertain data”
than they were a few years ago, when radar reflections from a
rising moon were interpreted by the computerized ballistic mis-
sile warning system as an enemy attack. In its evaluation of
the Strategic Computing Program, the Office of Technology As-
sessment cautions:

Unlike the Manhattan Project or the Manned Moon Landing Mis-
sion, which were principally engineering problems, the success of
the DARPA program requires basic scientific breakthroughs, nei-
ther the timing nor nature of which can be predicted.?

Even if the Department of Defense invests billions in Al, there
is almost no likelihood that this state of affairs will change.

Let us hope that, after having wasted hundreds of millions
on their artificially intelligent decision-making systems, military
managers will still be wise enough to see their obvious shortcom-
ings and refrain from deploying them. Still we should note the
risk: Once vast sums of money have been spent, the temptation
will be great to justify the expenditure by installing questionable
Al-based technologies in a variety of critical contexts—from data-
reduction to battle management. And, to justify its expenditures
to the general public, the military may feel compelled to encour-
age the adoption of similar technologies in the civilian sector:
Automated air traffic control systems and the overzealous adop-
tion of computerized teaching machines are both very real possi-
bilities.

Unless illusions concerning Al are dispelled we are risking
a future in which either computers make crucial military deci-
sions and spinoffs from military development flood unplanned
into civilian life or hundreds of millions of dollars are wasted
pursuing false hopes. Knowledgeable practitioners of artificial
intelligence have already learned from bitter experience that
the success of initiatives like Strategic Computing are highly
unlikely. We hope that military decision-makers, or the politi-
cians who fund them, will see the light and save the taxpayer
money by terminating the effort until basic research results jus-
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tify the expenditure. In the meantime, we believe it appropriate
that more people understand the real nature of artificial intelli-
gence technology. No unprecedented and potentially dangerous
reliance on automated systems should be adopted without the
widespread and informed involvement of the people to be af-
fected.

At this point the reader may reasonably ask: But if symbol-
manipulating computers cannot attain the skill level of an expert
human being, and if the “Japanese challenge in Fifth Generation
Systems” is essentially a money grab on the part of ambitious
Al entrepreneurs, why don’t we or at least the military technolo-
gists already know it? The answer is that the spokesmen for
the artificial intelligence community have a great deal at stake
in making it appear that their pure science of artificial intelli-
gence and its engineering offspring, expert systems, are solid,
established, and noncontroversial. They will do whatever is re-
quired to preserve that image.

When a Silicon Valley PBS affiliate television station, KCSM
in San Mateo, wanted to do a program on Al and expert systems
to be shown nationally, Stanford’s Al expert, John McCarthy,
was happy to take part, as was a representative of IntelliCorp,
an expert systems company that wished to air a promotional
demonstration film. I was asked to be on the show as a discussant
to provide a balanced perspective. After much negotiating, an
evening was finally agreed upon for taping. That evening the
producer and technicians were standing by at the studio, and
I was already in San Mateo when word came at the last minute
that McCarthy would not show up and that IntelliCorp had with-
drawn its demo because Dreyfus was to be on the program.
The third participant, expert systems expert Michael Geneser-
eth, also backed out.

All of us standing by were stunned. I had already been inter-
viewed about AI on NOVA and on the CBS television network
news and had recently appeared on a panel with Marvin Minsky,
Seymour Papert, John Searle, and McCarthy himself at a meeting
sponsored by the New York Academy of Sciences. Why not on
KCSMP The reason seemed to be that no one could prevent
NOVA or Dan Rather from interviewing me, and the discussion
in New York reached an audience of only five hundred. But
when it came to a half-hour discussion aired nationally, the ex-
perts wanted to give the impression that they represented a
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successful science with marketable products and so didn’t want
to have to face any potentially embarrassing questions.

The shock tactic worked. The executive producer and show
anchor man, Stewart Cheifet; rescheduled the taping with
McCarthy and the demo from IntelliCorp and decided that the
planned discussion with me had better be dropped. In the inter-
est of fairness, I was asked to submit my questions to him, to
be used at his discretion. I suggested he ask the following ques-
tions:

1. What are the unsolved problems in AI?

2. Has there been any progress toward solving them?

3. Why should we expect they will be solved?

4. Do expert systems ever do as well as the experts whose
rules they run?

5. If not, why not?

6. What makes you think experts follow unconscious rules,
anyway?

When I watched the program I saw that just as time was
running out, my questions were, indeed, asked, although in a
somewhat revised form. To the question, “How smart can ma-
chines become?” John McCarthy answered that he saw no limits
short of human intelligence, and that even that might be sur-
passed by faster machines. Nils Nilsson of SRI, who had replaced
Genesereth, admitted that it was “proving a little difficult to
represent commonsense knowledge.” The reason, he said, was
that “very few people are willing to pay for putting common-
sense knowledge into a computer.” There was no hint of the
fact that a decade of research on commonsense knowledge at
the main Al centers of the world had produced no progress.

To the next question, “Has Al turned out to be harder to
produce than you thought?”” McCarthy took issue with Nilsson’s
claim earlier in the program that one could at present put into
expert systems the knowledge of a world class expert. McCarthy
pointed out, quite sensibly, that one could do so only if the
knowledge could be captured in if-then rules. Other knowledge
used in a vaguer way, he said, is harder to program. No one
asked just what that other knowledge was or whether it could
be put into a computer at all. Time was up.

The viewers were left with the impression that Al is a solid,
ongoing science, which, like physics, is hard at work solving
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its quite manageable current problems, while expert systems
are its equally successful engineering offspring. Thus the public’s
chance to hear both sides was lost again, and the myth of steady
progress.in Al and the usefulness and reliability of expert systems
was maintained. The real story remained to be told, and we
propose to tell it here.

To deal with the questions I put to the TV panel, we first
need to understand human skills and what goes into becoming
a human expert. We must also see how computers as logic ma-
chines actually work and to what extent human skill can be
simulated by using them. That is an empirical question and can
be answered only by looking into the successes and failures of
artificial intelligence and expert systems. Then we will be in a
position to apply our understanding of the limits of logic ma-
chines to two professions especially concerned with the role of
computers in their work—education and management. Finally
we can begin to bring the history of Western philosophy up to
date, restoring the proper balance between calculative reason
and intuition.



CHAPTER 1

FIVE STEPS FROM
NOVICE TO EXPERT

Mathematical formalizers wish to treat matters of intuition
mathematically, and make themselves ridiculous. . . .
The mind . . . does it tacitly, naturally, and without technical rules.

Pascal
Pensées (1670)

YOU PROBABLY KNOW how to ride a bicycle. Does that mean
you can formulate specific rules that would successfully teach
someone else how to do it? How would you explain the difference
between the feeling of falling over and the perfectly normal
sense of being slightly off balance when turning? And do you
really know, until it happens, just what you would do in response
to a certain unbalanced feeling? No, you don’t. You can ride a
bicycle because you possess something called “know-how,”
which you acquired from practice and sometimes painful experi-
ence. The fact that you can’t put what you have learned into
words means that know-how is not accessible to you in the form
of facts and rules. If it were, we would say that you “know that”
certain rules produce proficient bicycle riding.

The issue, of course, is not confined to riding a bike. All of
us know how to do innumerable things that, like bike riding,
cannot be reduced to “knowing that.” You know how to carry
on a conversation, and how to do so appropriately in a wide
variety of contexts with your family, your friends, in the office,
at a party, and with a stranger. Not only do you know what
sorts of things to say in various social settings, but how far to

16
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stand from your conversational partner and what tone of voice
to use. You almost certainly know how to walk. Yet the mechan-
ics of walking on two legs is so complex that the best engineers
cannot even come close to reproducing it in artificial devices.
If you are a carpenter, you know how to use tools in a way
that escapes verbalization. A blind person knows how to use
his cane, not as an object that transmits messages through im-
pacts, each requiring interpretation, but in the same way you
know how to use your arm to grope about in a dark room. You
know how to get along with people, do your job, lead your life.

Maybe you take your know-how so much for granted that
you don’t appreciate the extent to which it pervades your activi-
ties except in situations in which it has deserted you. Have you
ever been driving effortlessly along a city street in a stick-shift
car and suddenly found yourself consciously thinking about the
gear you are in and whether it’s appropriate? Chances are the
sudden reflection upon what you were doing and the rules for
doing it was accompanied by a severe degradation of perfor-
mance; perhaps you shifted at the wrong time or into the wrong
gear. Here you fell victim to “knowing that” as it interrupted
and replaced your “knowing how.”

Practice is required for maintaining know-how. It can be lost
through inactivity. When we were engaged in Air Force-spon-
sored research into flying skill, Captain Drew Poston, an expert
pilot who had been promoted to instructor and then became
an evaluator who tested the competence of trainees, described
an embarrassing experience. As an evaluator, his only opportu-
nity to fly the four jet KC-135s at which he had once been expert
was during the return flight after completing an evaluation. He
was approaching Castle AFB on one such flight when an engine
failed. That is technically an emergency, but the experienced
and practiced pilot will respond effortlessly to compensate for
the pull to one side. Being out of practice, Captain Poston
thought about what to do and then overcompensated. He then
consciously corrected himself, and the plane shuddered back
and forth as he landed. Consciously using rules, he had regressed
to flying like a beginner.

Here is an experiment that will perhaps bring home to you
the difference between “knowing how” and “knowing that.”
A version of it was first performed in England about ten years
ago.! Imagine that you have been asked to perform two tasks.
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In the first, you are presented with a stack of cards. One side
of each card has either the letter A or the letter D. The opposite
side of each card has either the number 4 or the number 7.
The cards are now stacked with either side up, at random, and
shuflled, so that thumbing through the deck you would see some
A’s, some D’s, some 4s and some 7s. Your task is to determine
whether or not the cards of this deck satisfy the rule “If the
letter side of a card is an A, then the number side must be a
4.” To make that determination, you are to imagine that you
are going through the deck, looking at the turned-up side of
each card, one at a time, and turning over whichever cards
you must, but only those cards, in order to verify or contradict
the rule that every A must be accompanied by a 4.

Think about the task for a moment. Would you turn over
only those cards with A’s showing? Or those showing A’s and
4sP Or showing A’s and 7sP Or perhaps those showing A’s, 4s,
and 7s? Or did you choose some other combination? Write down
your choice and proceed to task two. And don’t feel discouraged.
Task one is difficult, and most of the English college students
upon whom the experiment was first performed failed to give
the correct answer.

As task two, you are to imagine that you are the cashier at
a supermarket and have the checks received that day stacked
before you; some face up and some face down. Your supermarket
has a rule. The checkout people are to accept checks for more
than $50 only if approved on the back by the manager. Imagine
that you are to go through the checks, one at a time, and turn
over only those checks necessary to establish if the approval
rule has been followed.

Again, think about the task for a moment. Would you turn
over only checks bigger than $50? Or those, plus checks with
their face down bearing the manager’s approval? Or those for
over $50 and those with no approval on the back? Or perhaps
checks exceeding $50, plus all checks with their faces down?
Or some other combination?

As before, jot down your answer. If you are typical of most
subjects of this experiment, you did not find task two nearly
as difficult as task one. You probably correctly answered two
by turning over checks for more than $50 and those with no
approval on their backs. You were more likely to miss on task
one, for which the correct solution is to turn over A’s and 7s
only.
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Why this pair of experiments? Because the two tasks are essen-
tially identical. If you designate “over $50” as A, “not over $50”
as D, “approved on back” as 4 and “unapproved” as 7, task
two becomes task one. But while they are abstractly identical,
the statement of task two draws, for many, on “knowing how,”
whereas task one is perceived as a logical puzzle requiring the
application of logical rules, that is, requiring the reduction to
“knowing that.” All of you who did task two easily and correctly
and had trouble with task one have learned from this experience
that “knowing how” is quite distinct from “knowing that” and
in no way requires using conscious abstract rules.

Moreover, the fact that a reduction to rules of logic exists
for the specific problem we have just posed does not mean that
such a reduction is even possible for unstructured and poorly
defined problems found in the real world. Our cashier could
choose to use logic rather than know-how to deal with check
approval, but he also knows how to tell if a customer’s face
matches that on an ID, and no one knows a set of rules or proce-
dures that can produce this ability.

Five Stages of Skill Acquisition

The know-how of cashiers, drivers, carpenters, teachers, manag-
ers, chess masters, and all mature, skillful individuals is not in-
nate, like a bird’s skill at building a nest. We have to learn.
Small children, and sometimes adults, learn through trial and
error, often guided by imitation of those more proficient. Chil-
dren learn to walk and adults learn bicycle riding in this manner.
More commonly, however, adults begin to acquire new skills
by means of either written or verbal instruction. It is this process
that concerns us here.

As human beings acquire a skill through instruction and expe-
rience, they do not appear to leap suddenly from rule-guided
“knowing that” to experience-based know-how. A careful study
of the skill-acquisition process shows that a person usually passes
through at least five stages of qualitatively different perceptions
of his task and/or mode of decision-making as his skill improves.
Understanding the dynamic process of human skill acquisition
provides the framework for our investigation of machine intelli-
gence. Once we adequately appreciate the full development
of human skilled behavior, we can ask how far along this path
the digital computer can reasonably be expected to progress.
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We're painfully aware of the fact that we shall continually
be referring to “he” as the subject in what follows. Let us make
it clear that women become experts based on their concrete
experiences as readily as men. Some fields may be dominated
by male or female experts, but we all share expertise equally
in most everyday activities such as conducting conversations,
recognizing faces, and walking through traffic.

As we examine in detail how a novice, if he possesses innate
ability and has the opportunity to acquire sufficient experience,
gradually becomes an expert, we shall focus upon the most com-
mon kind of problem area, sometimes called “unstructured.”
Such areas contain a potentially unlimited number of possibly
relevant facts and features, and the ways those elements interre-
late and determine other events is unclear. Management, nurs-
ing, economic forecasting, teaching, and all social interactions
fall into that very large class. Examples of “structured areas”
of decision-making, on the other hand, are mathematical manip-
ulations, puzzles, and, in the real world, delivery truck routing
and petroleum blending. Here the goal and what information
is relevant are clear, the effects of decisions are known, and
verifiable solutions can be reasoned out. A high level of skill
in any unstructured problem area seems to require considerable
concrete experience with real situations, and any individual will
have had more experience with some types of situations than
with others. Consequently an individual will be at the same
time expert with respect to certain types of problems in his
area of skill, but less skilled with respect to others. A business-
man, for example, may show expertise at marketing while at
the same time being only competent as a financial planner, and
a mere novice when it comes to negotiating a merger.

We studied the skill-acquisition process of airplane pilots,
chess players, automobile drivers, and adult learners of a second
language and observed a common pattern in all cases, which
we call the five stages of skill acquisition. You need not merely
accept our word but should check to see if the process by which
you yourself acquired various skills reveals a similar pattern.
After we developed our five-stage description, a group of re-
search nurses who had amassed considerable data about the ac-
quisition of nursing skill found that our model fitted their data
very well. The results of that study may be found in the book
From Novice to Expert by Professor Patricia Benner.2
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Not all people achieve an expert level in their skills. Some
areas of skill—chess, for example—have the characteristic that
only a very small fraction of beginners can ever master the do-
main. That, of course, is one of the great attractions of the game.
Other areas, such as automobile driving, are so designed that
almost all novices can eventually reach the level we call expert,
although some will always be more skilled than others. Being
an expert, or being at any particular stage of our skill acquisition
model, does not necessarily mean performing as well as everyone
else exhibiting the same type of thought process. We refer to
“stages” because (1) each individual, when confronting a particu-
lar type of situation in his or her skill domain, will usually ap-
proach it first in the manner of the novice, then of the advanced
beginner, and so on through the five stages, and (2) the most
talented individuals employing the kind of thinking that charac-
terizes a certain stage will perform more skillfully than the most
talented individuals at an earlier stage in our model.

The five stages we shall lay out are called novice, advanced
beginner, competent, proficient, and expert.

Stage 1: Novice

During the first stage of the acquisition of a new skill through
instruction, the novice learns to recognize various objective facts
and features relevant to the skill and acquires rules for determin-
ing actions based upon those facts and features. Elements of
the situation to be treated as relevant are so clearly and objec-
tively defined for the novice that they can be recognized without
reference to the overall situation in which they occur. We call
such elements “context-free,” and the rules that are to be applied
to these facts regardless of what else is happening “context-free
rules.” The manipulation of unambiguously defined context-free
elements by precise rules is called “information processing.” If
you recognize a letter E because it has certain horizontal and
vertical lines in a certain relationship, you have done so by infor-
mation processing. If you recognize it because it matches what
you have seen before and learned is an E, you have used holistic
template matching, not information processing.

Here are some examples of context-free features and rules
as they are sometimes presented to beginners in a variety of
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skill areas. The beginning automobile driver learning to operate
a stick-shift car is told at what speed (a context-free feature) to
shift gears and, at any given speed, at what distance (another
such feature) to follow a car preceding him. These rules ignore
context. They do not refer to traffic density or anticipated stops.
Similarly, the beginning chess player is given a formula for as-
signing point values to pieces independent of their position and
the rule “always exchange your pieces for the opponent’s if the
total value of pieces captured exceeds that of pieces lost.”” The
beginner is generally not taught that in certain situations the
rule should be violated. The novice nurse is taught how to read
blood pressure, measure bodily outputs, and compute fluid reten-
tion, and is given rules for determining what to do when those
measurements reach certain values. A business school student
of marketing learns consumer behavior theories and cost-profit
modeling and plugs into such models context-free features like
market share, sample survey results, demographic data, and pro-
duction costs.

The beginning student wants to do a good job, but lacking
any coherent sense of the overall task he judges his performance
mainly by how well he follows learned rules. After he acquires
more than just a few rules, the exercise of his skill requires so
much concentration that his capacity to talk or listen to advice
is severely limited. Like the training wheels on a child’s first
bicycle, these first rules allow the accumulation of experience,
but soon they must be put aside to proceed.

Stage 2: Advanced Beginner

Performance improves to a marginally acceptable level only af-
ter the novice has considerable experience in coping with real
situations. While that encourages the learner to consider more
context-free facts and to use more sophisticated rules, it also
teaches him a more important lesson involving an enlarged con-
ception of the world of the skill. Through practical experience
in concrete situations with meaningful elements, which neither
an instructor nor the learner can define in terms of objectively
recognizable context-free features, the advanced beginner starts
to recognize those elements when they are present. How?
Thanks to a perceived similarity with prior examples. We call
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the new elements “situational” to distinguish them from context-
free elements. Rules for behavior may now refer to both the
new situational and the context-free components.

Take a few real-world examples. A dog owner learns through
experience to recognize his pet’s distinctive bark, but he cannot
list any particular facts about that bark which would allow you
to recognize it. If the dog’s bark were displayed on an oscillo-
scope as a sound wave, facts about that wave could be used to
identify it. But those are not the sort of facts to which the owner
has any conscious access. Similarly, nobody combines facts or
features to identify the smell of coffee.

The advanced beginner automobile driver uses situational
engine sounds as well as context-free speed in his gear-shifting
rules. He also learns to distinguish between the behavior of the
distracted or drunken driver and that of the impatient but alert
one. With experience, the chess beginner learns to recognize
and avoid overextended positions. Similarly, after much experi-
ence he can spot such situational aspects of positions as a weak-
ened king’s side or a strong pawn structure despite the lack of
precise and universally valid definitional rules. The student nurse
learns from experience how to distinguish the breathing sounds
that indicate pulmonary edema from those suggesting pneumo-
nia. Rules of treatment can now refer to the presence or absence
of such sounds. The advanced beginner marketing decision-
maker learns not by rules but by experience how to assess his
company’s competence in the manufacture of a new product,
which becomes a factor in his decision-making. In all those cases,
experience seems immeasurably more important than any form
of verbal description.

Stage 3: Competence

With more experience, the number of recognizable context-free
and situational elements present in a real-world circumstance
eventually becomes overwhelming. A sense of what is important
is missing, as is beautifully illustrated in an expert nurse’s descrip-
tion of her advanced-beginner students:

I give instructions to the new graduate, very detailed and explicit
instructions: When you come in and first see the baby, you take
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the baby’s vital signs and make the physical examination, and you
check the LV. sites, and the ventilator and make sure that it works,
and you check the monitors and alarms. When I would say this
to them, they would do exactly what I told them to do, no matter
what else was going on . . . They couldn’t choose which one was
the most important . . . They couldn’t do for one baby the things
that were most important and then go to the other baby and do
the things that were the most important, and leave the things that
weren’t as important until later on.3

The expert goes on to note:

If I said, you have to do these eight things . . . they did those
things, and they didn’t care if their other kid was screaming its
head off. When they did realize, they would be like a mule between
two piles of hay.*

To cope with such problems, people learn, or are taught, to
adopt a hierarchical procedure of decision-making. By first
choosing a plan to organize the situation, and by then examining
only the small set of factors that are most important given the
chosen plan, a person can both simplify and improve his perfor-
mance.

In general, a competent performer with a goal in mind sees
a situation as a set of facts. The importance of the facts may
depend on the presence of other facts. He has learned that when
a situation has a particular constellation of those elements a cer-
tain conclusion should be drawn, decision made, or expectation
investigated.

A competent driver, for example, is no longer merely follow-
ing rules designed to enable him to operate his vehicle safely
and courteously but drives with a goal in mind. If he wishes
to get from point A to point B very quickly, he chooses his
route with attention to distance and traffic, ignores scenic beauty,
and as he drives selects his maneuvers with little concern for
passenger comfort or courtesy. He follows other cars more
closely than normally, enters traffic more daringly, and even
violates the law. A competent chess player’ may decide, after
studying his position and weighing alternatives, that he can at-
tack his opponent’s king. He would then ignore certain weak-
nesses in his own position and the personal losses created by
his attack, while removal of pieces defending the enemy king
becomes his overriding objective.
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One of us, Stuart, knows all too well what it is to think like
a competent chess player, as he is stuck at that level. He recalls:

I was always good at mathematics and took up chess as an outlet
for that analytic talent. At college, where I captained the chess
team, my players were mostly mathematicians and mostly, like me,
at the competent level. At this point, a few of my teammates who
were not mathematicians began to play fast chess at the rate of
five or ten minutes a game, and also eagerly to play over the great
games of the grandmasters. I resisted. Fast chess was no fun for
me, because it didn’t give me time to figure out what to do. I
found grandmaster games inscrutable, and since the record of the
game seldom if ever gave rules and principles explaining the moves,
I felt there was nothing I could learn frorn the games. Some of
my teammates who through fast chess and game studying acquired
a great deal of concrete experience have gone on to become mas-
ters.

As I look around at my mathematical academic colleagues, most
of whom play chess and none of whom have gotten beyond my
own competent level, I see how our view of chess as a strictly
analytic game has cut us off from absorbing concrete chess experi-
ence. While students of mathematics and related topics predomi-
nate in the population of young people enthusiastic about chess,
you are as likely to find a truck driver as a mathematician among
the world’s best players. You are more likely to find an amateur
psychologist or a journalist. In a way I am glad that my analytic
approach to chess stymied my progress, because this helped me
to see that there is more to skill than reasoning.

We once asked the chess champion of The Netherlands, Jan
Donner, why women had never risen to the highest levels in
chess. Donner’s puzzling reply was that women in chess lack
intuition. Twenty years later we finally understood. Young
women who are attracted to chess are, like future mathemati-
cians, seduced by its analytic challenge. Accordingly, the self-
selected group of women fails to make the leap to intuitive play
that characterizes expertise. If less analytically inclined women
took up chess in sufficient numbers, one might well soon find
women among the strongest players. Interestingly, a fifteen-
year-old Hungarian woman, Susan Polgar, has suddenly risen
to the International Master level of chess. She has played since
she was four, by which age she could hardly have learned to
see herself as analytically talented. In fact, in a recent New York
Times interview she boasted: “I play chess by instinct.”
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The competent nurse will no longer automatically go from
patient to patient in a prescribed order but will assess the ur-
gency of their needs and plan work accordingly. With each pa-
tient, such a nurse will develop a plan of treatment, deciding
that if certain signs are present a certain number of days after
surgery, say, the time has come to talk with a patient about
his wound and its care outside the hospital. When discussing
the matter, various medical aspects of the patient’s condition
will be ignored, and psychological aspects will become impor-
tant. The competent manager of marketing will decide first
whether there is need for a change in the status quo, then the
scale of any planned undertaking, and finally the actual sequence
of events. During each decision in the hierarchy he will pay
attention to only a few of the immense number of factors imping-
ing on the overall project.

Choosing a plan is no simple matter for the competent
individual. There is no objective procedure like the novice’s
context-free feature recognition. And while the advanced begin-
ner can get along without recognizing and using a particular
situational element until a sufficient number of examples renders
identification easy and sure, to perform at the competent level
requires choosing an organizing plan. Furthermore, the choice
crucially affects behavior in a way that one particular situational
element rarely does.

That combination of nonobjectivity and necessity introduces
an important new type of relationship between the performer
and his environment. Recall that the novice and advanced begin-
ner recognize learned components and then apply learned rules
and procedures. As a consequence, they feel little responsibility
for the outcome of their acts. Assuming that they have made
no mistakes, an unfortunate outcome is viewed as the result of
inadequately specified elements or rules. The competent per-
former, on the other hand, after wrestling with the question
of the choice of a plan, feels responsible for, and thus emotionally
involved in, the product of his choice. While he both understands
and decides in a detached manner, he finds himself intensely
involved in what occurs thereafter. An outcome that is clearly
successful is deeply satisfying and leaves a vivid memory of the
plan chosen and of the situation as seen from the perspective
of the plan. Disasters, likewise, are not easily forgotten.

When cognitive scientists, psychologists, and others who think
about thinking speak of “problem-solving” they have in mind
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the thought processes that characterize competence. Herbert
Simon is typical of such information-processing psychologists,
for his concern is to understand how we choose plans, goals,
and strategies, and how situations represented as sets of facts
and figures can be transformed by rule-like procedures into new
sets that conform with our goals. Those psychologists have pro-
duced convincing evidence that we act as problem-solvers when
confronted by puzzles or by unfamiliar situations. However, they
typically go on to generalize their results too far, accepting as
essentially true, without supporting this claim by any arguments
or empirical evidence, that all intelligent behavior is of the
problem-solving form. They thus uncritically accept the informa-
tion processing assumption that intelligence consists in drawing
conclusions using features and rules. Simon has written that the
entire cognitive research enterprise “rests implicitly on the phys-
ical symbol system hypothesis: possession of the basic resources
of a physical symbol system is both the necessary and sufficient
condition for intelligent behavior.”¢ We agree that problem-solv-
ing is “sufficient” to produce certain intelligent behaviors; that
has been well documented. But there is not a shred of evidence
that it is “necessary,” that we cannot be intelligent without solv-
ing problems. Clearly we are not conscious of solving problems,
that is, of selecting goals and combining elements by rule to
reach them, during much of our life’s activity. When we ride
a bicycle, recognize a face in a crowd, exhibit common sense,
use natural language, or cope skillfully with the great bulk of
everyday situations, are we acting on the basis of rules? If not,
are those activities therefore somehow not intelligent? And what
of the processes by which we recognize problems that ought
to be solved, are they too reducible to operations on sets of
elements? Perhaps they are, but there is certainly no empirical
evidence for assuming that they are.

The two highest levels of skill, levels we shall now describe
in detail, are characterized by a rapid, fluid, involved kind of
behavior that bears no apparent similarity to the slow, detached
reasoning of the problem-solving process.

Stage 4: Proficiency

Up to this point the learner of a new skill, to the extent that
he has made decisions at all rather than merely following rules,
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has made conscious choices of both goals and decisions after
reflecting upon various alternatives. This Hamlet model of deci-
sion-making—the detached, deliberative, and sometimes agoniz-
ing selection among alternatives—is the only one recognized
in much of the academic literature on the psychology of choice.
While that type of carefully thought-out behavior certainly some-
times occurs, frequently for learners of new skills and occasion-
ally for even the most skillful, an unbiased examination of our
everyday behavior shows it to be the exception rather than the
rule.

Usually the proficient performer will be deeply involved in
his task and will be experiencing it from some specific perspec-
tive because of recent events. Because of the performer’s per-
spective, certain features of the situation will stand out as salient
and others will recede into the background and be ignored.
As events modify the salient features, plans, expectations, and
even the relative salience of features will gradually change. No
detached choice or deliberation occurs. It just happens, appar-
ently because the proficient performer has experienced similar
situations in the past and memories of them trigger plans similar
to those that worked in the past and anticipations of events
similar to those that occurred.

Recall that an advanced beginner recognizes situational ele-
ments such as the smell of coffee after experiencing several ex-
amples. No evidence suggests that this is done by identifying
components of that smell and combining those elements by a
rule. Similarly, no evidence suggests that we recognize whole
situations by applying rules relating salient elements. A boxer
seems to recognize the moment to begin an attack, not by com-
bining by rule various facts about his body’s position and that
of his opponent, but when the whole visual scene in front of
him and sensations within him trigger the memory of earlier
similar situations in which an attack was successful. We call the
intuitive ability to use patterns without decomposing them into
component features “holistic similarity recognition.”

When we speak of intuition or know-how, we are referring
to the understanding that effortlessly occurs upon seeing similari-
ties with previous experiences. We shall use “intuition” and
“know-how” as synonymous, although a dictionary would distin-
guish them, assigning “intuition” to purely cognitive activities
and “know-how” to the fluid performance of a bodily skill.
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Intuition must not be confused with irrational conformity,
the reenactment of childhood trauma, and all the other uncon-
scious and noninferential means by which human beings come
to decisions. Those all resist explanation in terms of facts and
inferences, but only intuition is the product of deep situational
involvement and recognition of similarity. Nor is guessing what
we mean by intuition. To guess is to reach a conclusion when
one does not have sufficient knowledge or experience to do so.
Some people believe there is a kind of enlightened guessing
based on neither principles nor past experience. That kind of
mystical attunement, if it exists at all, is not what we mean by
intuition. Intuition or know-how, as we understand it, is neither
wild guessing nor supernatural inspiration, but the sort of abil-
ity we all use all the time as we go about our everyday tasks,
an ability that our tradition has acknowledged only in women,
usually in interpersonal situations, and has adjudged inferior to
masculine rationality.

The proficient performer, while intuitively organizing and
understanding his task, will still find himself thinking analytically
about what to do. Elements that present themselves as impor-
tant, thanks to the performer’s experience, will be assessed and
combined by rule to produce decisions about how best to manip-
ulate the environment. The spell of involvement in the world
of the skill will thus be temporarily broken.

Here are a few examples of involved, intuitive understanding
followed by detached decision-making. On the basis of prior
experience, the proficient driver, approaching a curve on a rainy
day, may intuitively realize that he is driving too fast. He then
consciously decides whether to apply the brakes, remove his
foot from the accelerator, or merely reduce pressure. The profi-
cient chess player? can recognize a very large repertoire of types
of positions. Grasping almost immediately, and without conscious
effort, the sense of a position, he sets about calculating a move
that best achieves his intuitive plan. He may, for example, know
that he should attack, but he must deliberate about how best
to do it. Recall that earlier we described how the competent
nurse will figure out an organizing goal and gave as an example
the nurse who decided it was time to discuss with the patient
the surgical wound and how it would heal. The proficient nurse
will notice one day, without any conscious decision-making, that
the patient is psychologically ready to deal with his surgery and
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impending release. However, during the conversation, words
will be carefully and consciously chosen. The proficient market-
ing manager will keep his finger on the pulse of the product
market through reading and listening to everything from formal
reports to gossip. One day he may decide, intuitively, that a
problem or opportunity exists and that product repositioning
should be considered. He will then initiate a study of the situa-
tion, quite possibly taking great pride in the sophistication of
his scientific analysis while overlooking his much more impres-
sive talent—that of recognizing, without conscious thought, the
simple existence of the problem.

Stage 5: Expertise

An expert generally knows what to do based on mature and
practiced understanding. When deeply involved in coping with
his environment, he does not see problems in some detached
way and work at solving them, nor does he worry about the
future and devise plans. We usually don’t make conscious delib-
erative decisions when we walk, talk, drive, or carry on most
social activities. An expert’s skill has become so much a part
of him that he need be no more aware of it than he is of his
own body.

The expert driver becomes one with his car, and he experi-
ences himself simply as driving, rather than as driving a car,
just as, at other times, he certainly experiences himself as walking
and not, as a small child might, as consciously and deliberately
propelling his body forward. Airplane pilots report that as begin-
ners they felt that they were flying their planes but as expe-
rienced pilots they simply experience flying itself. Chess
grandmasters,® engrossed in a game, can lose entirely the aware-
ness that they are manipulating pieces on a board and see them-
selves rather as involved participants in a world of opportunities,
threats, strengths, weaknesses, hopes, and fears. When playing
rapidly, they sidestep dangers in the same automatic way that
a teenager, himself an expert, might avoid missiles in a familiar
video game, or as we avoid familiar obstacles when we dash
to the phone. Similarly, the expert business manager, surgeon,
nurse, lawyer, or teacher is totally engaged in skillful perfor-
mance. When things are proceeding normally, experts don’t
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solve problems and don’t make decisions; they do what normally
works.

Expert air traffic controllers don’t experience themselves as
seeing blips on a screen and deducing what must be going on
in the sky. They “see” planes in the sky when they look at their
screens, and they respond to what they see, not by rules but
as experience has taught them. Presumably in time of attack
military commanders would “see” a situation based on whatever
data are available and would respond using common sense and
experience. The frightening prospect with the “Star Wars” de-
fense system, which requires that all contingencies be antici-
pated and rules for response be programmed into a computer,
is that the expert’s ability to use intuition will be forfeited and
replaced by merely competent decision-making. In a crisis com-
petence is not good enough.

The acquisition of medical diagnosis skill using x-ray film has
recently been studied. After a few years of training, radiologists
seem to form diagnostic hypotheses and draw conclusions from
sets of relevant features as described in our third stage of skill
acquisition, competence. But do experts perform in that way?
Our skill acquisition model suggests that after enough experience
-with the films of patients with a particular condition the pattern
of dark and light regions associated with that condition is stored
in memory, and when a similar pattern is seen, the memory is
triggered and the diagnosis comes to mind. There would be
no decomposition of the patterns on the film into features, and
no need for rules associating conditions with features. If you
doubt that a dark and light pattern could look to the specialist
like a collapsed lung lobe without need for detection of features
and application of rules, imagine a patient with a glass chest.
Even a novice doctor would see at a glance that a lung lobe
was collapsed. Why should it be surprising that with enough
experience an x-ray might look as familiar and informative to
the expert as the actual chest looks to the novice doctor and
that the expert should be able to “see” an abnormality through
the x-ray as the novice doctor would see it through glass?

In the idealized picture of the skillfully coping expert that
we have just presented it might seem that experts never think
and are always right. Of course, in reality things are otherwise.
While most expert performance is ongoing and nonreflective,
when time permits and outcomes are crucial, an expert will
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deliberate before acting. But as we shall show shortly, this delib-
eration does not require calculative problem solving, but rather
involves critically reflecting on one’s intuitions. And even after
critical reflection, experts’ decisions don’t always work out. An
expert may, for example, in spite of great experience, be thrown
a curve by events he could not have foreseen. Furthermore,
where experts are pitted against other experts, only one can
win.

If you have followed our description of how experience-based
holistic recognition of similarity produces deep situational under-
standing, no new insight is needed to explain the mental pro-
cesses of the expert. With enough experience in a variety of
situations, all seen from the same perspective or with the same
goal in mind but requiring different tactical decisions, the mind
of the proficient performer seems to group together situations
sharing not only the same goal or perspective but also the same
decision, action, or tactic. At this point not only is a situation,
when seen as similar to a prior one, understood, but the associ-
ated decision, action, or tactic simultaneously comes to mind.

An immense library of distinguishable situations is built up
on the basis of experience. A chess master, it has been estimated,
can recognize roughly 50,000 types of positions, and the same
can probably be said of automobile driving. We doubtless store
many more typical situations in our memories than words in
our vocabularies. Consequently, such situations of reference bear
no names and, in fact, seem to defy complete verbal description.

With expertise comes fluid performance. We seldom “choose
our words” or “place our feet”—we simply talk and walk. The
skilled outfielder doesn’t take the time to figure out where a
ball is going. Unlike the novice, he simply runs to the right
spot. Taisen Deshimaru, a Japanese martial artist, remarks:
“There is no choosing. It happens unconsciously, automatically,
naturally. There can be no thought, because if there is thought,
there is a time of thought and that means a flaw. . . . If you
take the time to think ‘I must use this or that technique,” you
will be struck while you are thinking.””® Tennis players “react”
when expert, and, a surprising amount of the time, so do business
managers and experienced doctors and nurses when deeply in-
volved in their professional activities. The expert driver not only
knows by feel and familiarity when an action such as slowing
is required, but generally knows how to perform the act without
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evaluating and comparing alternatives. An expert American
driver turning a corner would have to decide to keep to the
left if he were driving in England, where he is no expert, but
he does not have to decide to keep to the right in the United
States.

The grandmaster chess player can recognize a large reper-
toire of types of position for which the desirable tactic or move
immediately becomes obvious. Excellent chess players can play
at the rate of five to ten seconds a move and even faster without
serious degradation in performance. At that speed they must
depend almost entirely on intuition and hardly at all on analysis
and comparing alternatives.

We recently performed an experiment in which an Interna-
tional Master, Julio Kaplan, was required to add heard numbers
at the rate of about one number per second while at the same
time playing five-second-a-move chess against a slightly weaker,
but master level, player. Even with his analytic mind completely
jammed by adding numbers, Kaplan more than held his own
against the master in a series of games. Deprived of the time
necessary to see problems or construct plans, Kaplan still pro-
duced fluid and coordinated play.

Kaplan’s performance seems somewhat less amazing when
one realizes that a chess position is as meaningful, interesting,
and important to a professional chess player as a face in a receiv-
ing line is to a professional politician. Bobby Fischer, perhaps
history’s greatest chess player, once said that for him “chess is
life.” Almost anyone can add numbers and simultaneously recog-
nize and respond to faces, even though the face will never ex-
actly match the same face seen previously, and politicians can
recognize thousands of faces just as Julio Kaplan can recognize
thousands of chess positions similar to ones previously encoun-
tered.

Herbert Simon has studied the chess master’s almost instan-
taneous understanding of chess positions and accompanying
compelling sense of the best move. He found that chess masters
are familiar with thousands of patterns, which he calls chunks.
Each chunk is a remembered description of a small group of
pieces in a certain relationship to each other. He conjectures
that a desirable move or chess idea is associated with each such
chunk. Hence moves spring to mind as chunks are recognized
without need for rule-like calculations.1?
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There are at least two problems with Simon’s speculation.
Because most chess positions are composed of several chunks,
more than one move would come to mind and would need to
be evaluated before the player gained a sense of which was
best. Yet Julio Kaplan seems not to require such evaluation when
he plays rapidly while simultaneously adding numbers. Hence
Simon’s conceptualization of chess in terms of chunk recognition,
while providing a theory about why moves spring to mind, still
seems to fall far short of the actual phenomenon of masterful
play. Furthermore, for Simon chunks such as a standard castled
king’s formation are defined independently of the rest of the
position. A configuration that didn’t quite fit the description of
a chunk, but in a real chess position played the same role as
the chunk, would not count as such. But chess players can recog-
nize the functional equivalence of configurations that don’t fall
under a single definition. For example, in some cases a configura-
tion would count as a standard castled king’s formation even
if one pawn were advanced, but in other cases it would not.
For these reasons it seems more plausible that expert chess play-
ers recognize and respond to whole positions, not component
chunks.!!

Expert nurses will sometimes sense that a patient lies in dan-
ger of an imminent relapse and urge remedial action upon a
doctor. They cannot always provide convincing, rational explana-
tions of their intuition, but very frequently they turn out to
be correct. Pat Benner quotes an expert psychiatric nurse clini-
cian, highly regarded for her judgment: “When I say to a doctor,
‘the patient is psychotic,” I don’t always know how to legitimize
the statement. But I am never wrong. Because I know psychosis
from inside out. And I feel that, and I know it, and I trust it.”"12

The nurse’s desire to justify her intuition shows the pressure
which often leads to rationalization, especially in our modern
Western culture. There are, of course, two interrelated senses
of the word “rationalization.” Once a decision intuitively pre-
sents itself, rationalization in the first sense describes the attempt
to find a valid explanation by identifying the elements of the
situation and combining those elements by a decision rule to
justify the chosen decision. That is the sort of rationalization
the nurse who “knows psychosis from the inside out” is seeking
when she gets “some in-service [people] in to talk to us about
language.” She realizes, however, that “all I am really trying
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to do is find words within the jargon to talk about something
that I don’t think is particularly describable.”3 If, indeed, ele-
ments and principles play no role in mature, practiced decision-
making, rationalization in this sense amounts to the invention
of reasons—rationalization in its second and generally deroga-
tory sense.

SOMEONE AT A PARTICULAR STAGE of skill acquisition can always
imitate the thought processes characteristic of a higher stage
but will perform badly when lacking practice and concrete expe-
rience. For example, a beginner can, like a competent per-
former, set goals, but without experience he won’t know how
to set them sensibly. Similarly, anyone who has seen one situation
in a skill domain and an accompanying action can then act intui-
tively like the expert by seeing all situations as similar to that
one and always repeating the same action. Of course, he will
perform quite badly. Our skill model represents a progression
in the sense that a typical learner’s best performance in a particu-
lar type of situation will initially stem from novice rule-following,
then from the advanced beginner’s use of aspects, and so on
through the five stages. If the performer is talented, ultimately
his best performance will result from the intuitive use of similar-
ity and experience, and he will perform as an expert.

Now you have an overall view of our five stages of changed
perception of the task environment and mode of behavior that
accompanies skill acquisition. What should stand out is the pro-
gression from the analytic behavior of a detached subject, con-
sciously decomposing his environment into recognizable
elements, and following abstract rules, to involved skilled behav-
ior based on an accumulation of concrete experiences and the
unconscious recognition of new situations as similar to whole
remembered ones. The evolution from the abstract toward the
concrete reverses what one observes in small children dealing
with intellectual tasks; they initially understand only concrete
examples and gradually learn abstract reasoning. Perhaps it is
because of the well-known pattern seen in children, and because
rule-following plays an important, early role in the learning of
new skills by adults, that adult understanding and skill are so
often misunderstood as abstract and rule-guided.

Recall that we have been discussing how we acquire skills
in unstructured problem areas, by which we mean areas in which
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the goal, what information is relevant, and the effects of our
decisions are unclear. Interpretation, whether conscious, as in
the case of the competent performer, or nonconscious and based
upon perceived similarities, as for the more skilled, determines
what is seen as important in a situation. That interpretive ability
constitutes “judgment.” Thus according to our description of
skill acquisition the novice and advanced beginner exercise no
judgment, the competent performer judges by means of con-
scious deliberation, and those who are proficient or expert make
judgments based upon their prior concrete experiences in a man-
ner that defies explanation.

The moral of the five-stage model is: there is more to intelli-
gence than calculative rationality. Although irrational behav-
jor—that is, behavior contrary to logic or reason—should
generally be avoided, it does not follow that behaving rationally
should be regarded as the ultimate goal. A vast area exists be-
tween irrational and rational that might be called arational. The
word rational, deriving from the Latin word ratio, meaning to
reckon or calculate, has come to be equivalent to calculative
thought and so carries with it the connotation of “combining
component parts to obtain a whole”; arational behavior, then,
refers to action without conscious analytic decomposition and
recombination. Competent performance is rational; proficiency
is transitional; experts act arationally.

Deliberative Rationality

The conscious use of calculative rationality produces regression
to the skill of the novice or, at best, the competent performer.
To think rationally in that sense is to forsake know-how and is
not usually desirable. If decisions are important and time is avail-
able, a more basic form of rationality than that of the beginner
is useful. This kind of deliberative rationality does not seek to
analyze the situation into context-free elements but seeks to
test and improve whole intuitions.

Serious tournament chess involves deep deliberation, al-
though, as we saw in the experiment where a player was de-
prived of the time to use it, quality of move choice depends
surprisingly little on anything beyond pure intuitive response.
You must be wondering: What does a masterful chess player
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think about when time permits, even when an intuitively obvious
move has already come spontaneously to mind? Often he uses
his time to follow out sequences of moves. Players at all levels
of skill have been shown to be equally good at this. But strong
intuitive players think about other things, too. What could be
going through their heads? We raise the question not merely
because chess is an intriguing mental activity, but because any
decision-maker—all of us, when facing important social or finan-
cial decisions—encounters a problem very similar to the chess
player’s. We stay away from technical chess vocabulary, so you
should find it easy to translate what we say into an account of
your own deliberations when you are faced with decisions when
planning a vacation, replacing an expensive appliance, bringing
up your children, or managing a household.

Few if any situations in chess or life are seen as being of
exactly the kind for which prior experience intuitively dictates
what move or decision must be made. Usually certain aspects
of the situation are slightly, yet disturbingly, different from what
would make one completely comfortable with a decision based
on what has happened before. The master chess player contem-
plates the differences, looking for a move that keeps all intui-
tively desirable options open while reducing his sense of
uneasiness. Failing that, he tries to modify slightly the intuitively
suggested move to account for the situation change.

A second focus of deliberation is the overall strategy being
pursued. A master player never calculates the best strategy by
a formula applied to decontextualized features of a position, as
a merely competent player might, rather, he always experiences
his position as raising issues prior experience causes him to see
as important. Those issues gradually evolve as moves are made,
however, so any organizing perspective, while an indispensable
asset to intuitive understanding, holds as well the potential for
disaster. Maintaining a perspective in the face of persistent and
disquieting evidence is called tunnel vision. Tunnel vision is fail-
ing to recognize a potential new perspective that better explains
recent past events and better dictates future actions.

While the novice and the advanced beginner are taught how
to respond to present situations, context-free rules can, in princi-
ple, also be provided for what to expect next in each objectively
defined situation. Those reasoned-out expectations can then en-
ter into the competent performer’s choice of a plan. Once the
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competent performer becomes involved in and remembers
whole situations, he of course also remembers what happened
next. That becomes the basis of the intuitive expectations of
the proficient performer. While he knows not why certain situa-
tions often lead to certain others, when they do, expectations
become associated with the remembered situations. The ex-
pected, should it occur, has a tendency to stand out as salient;
even the nonappearance of the expected is noteworthy. The
occurrence of the unexpected, however, may recede into the
background of inconsequential features. Thus, while expectation
seems to play an essential role in producing our ability to make
sense out of a potentially infinitely complex environment, it also
might produce tunnel vision, the inability to recognize and adapt
to unexpected events.

Tunnel vision can sometimes be avoided by a type of detached
deliberation. By focusing on aspects of a situation that seem
relatively unimportant when seen from one perspective, it is
possible for another perspective, perhaps that of one’s opponent,
to spring to mind. Should that happen, blunders caused by failing
to anticipate an opponent’s move can be avoided. To experience
a change of perspective by looking at a nonsalient element until
it becomes salient, consider the figure below. You probably see
it as a three-dimensional cube with a certain face projecting
out of the page toward you. Now concentrate your attention
on the corner of the cube behind that particular face. Most likely,
a face of the cube containing that corner suddenly becomes
the face closest to you, and you see the cube from a new perspec-
tive, with the face that originally stood out receding into the
background. If you saw the figure only as a pattern of rather
unrelated lines on a flat page, you saw it as a beginner perceives
his skill domain, before he attains competency and imposes a
perspective. Most real situations aren’t as fluid as the cube, be-




Five Steps from Novice to Expert 39

cause they frequently have only one interpretation consistent
with past experiences.

We once heard an Israeli fighter pilot recount how delibera-
tive rationality may have saved his life by rescuing him from
tunnel vision. Having just vanquished an expert opponent, he
found himself taking on another member of the squadron who
seemed to be brilliantly eluding one masterful ploy after another.
Things were looking bad until he stopped following his intuition
and deliberated. Trying other ways of seeing his situation, he
realized that all the surprising maneuvers of his opponent were
really the predictable, rule-following behavior of a beginner.
From then on, seeing the situation in terms of his experience
with beginners, he easily won.

Another form of deliberation, considering the relevance and
adequacy of past experiences that seem to underlie a current
intuition, can also be useful. One can ask: Is what would normally
appear to be the best move or strategy still the best in view
of the time pressures of a particular game or one’s current stand-
ing in a particular tournament? And even if past experience
seems relevant, might there be a better move or decision than
what experience brings to mind? A chess master sometimes
senses opportunities beyond what he can immediately see in a
position, presumably because much better results would be an-
ticipated in several similar positions, which, while not enough
like the present one to trigger an intuitive move, are still similar
enough to produce a sense of opportunity. In this case he puts
calculation in the service of intuition by examining sequences
of moves which lead to other situations which he then evaluates
intuitively.

One aspect of chess makes it a much more challenging subject
of deliberative rationality than real everyday situations. Envi-
sioned future positions are just as much real chess positions as
the present one, and they are equally subject to deliberation.
So a chess player can deliberate not only about his present posi-
tion but about each possible position that he foresees. An imag-
ined future in the everyday world is usually so incomplete as
to make deliberations that compare it to actual past situations
impossible.

Those sorts of issues would rarely, if ever, come to mind dur-
ing the involved, fluid, expert performance of such everyday
activities as driving a car, playing a sport, using a tool, or greeting
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a friend. Here, as in most things, we function exclusively as
intuitive experts. But when time permits and much is at stake,
detached deliberative rationality of the type described can en-
hance the performance of even the intuitive expert. We reiter-
ate, however, that such deliberation tests and improves whole
intuitions. No rules or principles are used to arrive at conclusions,
and so it is not the sort of calculative rationality used by the
beginner or competent performer as a surrogate for intuitive
understanding.

Beyond Rationality

We have so far neglected to some extent those processes by
which the human mind learns from experience. Involvement
is essential for the holistic similarity recognition of proficient
and expert performers. But if learning is to occur, some part
of the mind must remain aloof and detached. A monitoring mind
must decide when results justify reinforcement of chosen actions,
when events indicate that expectations or decisions should be
modified in future similar situations, or when what were seen
as similar situations in the past should be differentiated in the
future for purposes of expectation or decision. A portion of the
mind is thus responsible for the fine tuning or disaggregation
of current memories for more effective guidance of future behav-
ior.

There are rare moments, however, when all monitoring
ceases. We are referring to those brief periods of what is some-
times called “flow,” when performance, accompanied by a feel-
ing of euphoria, reaches its peak. Athletes describe the
phenomenon as playing “out of your head.” They are sometimes
taught that the “inner game” of their sport is the mental struggle
to achieve that state during competition. From our perspective
“flow” is not a sixth stage of the mental activities that produce
skilled behavior but rather the cessation of the monitoring activ-
ity that normally accompanies the higher levels.

Creativity is another phenomenon that we note but do not
examine. What we have been describing—the fine-tuned re-
sponse to events based upon the lessons of concrete experience—
ignores the truly imaginative act for which there is no detectable
historical precedent. Much of what passes for creativity is actu-
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ally unconventional and unexpected interpretations of past
events. Even Einstein, whose discovery of the elementary laws
of physics is often held up as the paragon of creative genius,
seems to have held a view rather like ours. He claimed neither
that his insights followed from logic nor that they went beyond
all experience, but rather: “To these elementary laws there leads
no logical path, but only intuition, supported by being sympa-
thetically in touch with experience.”* If so-called creative ge-
niuses do more than intuitively see new ways to use past
experience, such radical breaks must be extremely rare.

Experiments and Expertise

To forsake rationality in favor of unrationalized know-how is
to sail on uncharted seas, and there will always be those, espe-
cially in our Western culture, who challenge the wisdom of the
venture. A number of academic psychologists have even gone
so far as to create experiments purporting to show not only
the occasional fallibility of the human expert, a fact that no one
would deny, but consistent flaws in human decision-making that
might imply the general superiority of rational mathematical
approaches to real-world problems. More cautious psychologists
are just now beginning to recognize the overwhelming complexi-
ties attendant upon such research and to question experimental
evidence that claims to show systematic human deficiencies and
the superiority of rational models.

Let’s summarize and discuss some experimental evidence:

Experiment 1

When assimilating new evidence, people sometimes do not take
sufficient account of base rates—that is, the frequency with
which certain events have occurred in the past. As a result they
put too much weight on new evidence.

Consider the following hypothetical situation:1* Two cab com-
panies operate in a city, the Blue and the Green, the names
coming from the color of their cabs. Of all taxis, 85 percent
are Blue, and 15 percent are Green. One night a cab was in-
volved in a hit-and-run accident. No information is available
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about how many cabs of each color were on duty that night
or what cabs were in that part of the city at the time of the
accident. A witness later identified the cab as Green. The court
tested the witness’s ability to distinguish between Blue and
Green cabs at night under the same conditions as were present
at the time of the accident and found that the witness was able
to identify the color of a cab correctly 80 percent of the time
and was wrong 20 percent of the time. What are the chances
that the cab involved in the accident was Green, as claimed
by the witness?

A mathematical calculation using what is called Bayes’ Law
shows that the correct answer is .41. That is, it is more likely
than not that the witness was wrong. That is because the possible
error in the witness’s vision is compounded with the large likeli-
hood (85 percent), assuming no witness, that the cab was Blue.
Most individuals respond to this question with an answer at,
or close to, the 80 percent figure, paying too little attention to
the base-rate fact that most cabs in the city are Blue.

But does the poor performance of most subjects in the experi-
ment really show that people deal poorly with new evidence
in real-world situations? Note that the base-rate frequency can
be defined only with respect to some specific group. In the expe-
riment the appropriate group was all of the cabs operating in
the city, since nothing more was known about events that partic-
ular night. Things are not so simple in the real world. The ques-
tion of what group to use when determining the base rate is
often open to judgment.

What more typically occurs in the real world of skilled activity
is illustrated by a medical diagnostician’s judgment about the
likelihood of a patient’s having a particular disease, given specific
laboratory test results that indicate presence of the disease but
have a certain known likelihood of being wrong. One would
be wrong to equate the likelihood that the test is accurate with
the probability that the patient has the disease, just as one would
be wrong to accept the witness’s 80 percent accuracy in identify-
ing cabs as the likelihood the cab was Green. According to proba-
bility theory, the probability that the test results are correct
should be used to adjust the prior likelihood of the patient’s
having the disease based on what is already known from other
facts about him. But to what reference group should this individ-
ual be compared to obtain the prior likelihood? Everyone with
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the same symptoms for which prior tests had ruled out the same
possible other diseases? Everyone of his sex? his age? his ethnic
group? his country of origin or residence? his body type? his
personality traits? If all conceivable characteristics are specified,
the individual is unique, and there are no prior examples against
which a comparison can be made. If too few are specified, the
comparison group is inappropriate. In the real word, unlike the
experiment, there are rarely objectively correct choices of what
reference group to use. Expert doctors, guided by their experi-
ence-based know-how, wisely diagnose without specifically ad-
dressing the judgmental issue of relevant reference group. Only
when facing unfamiliar situations in which the diagnostician feels
that he is merely competent might it be sensible to think about
appropriate reference groups and then use probability updating
to combine base-rate data with additional tests. Here the com-
puter can be immensely useful.

So the experiment really shows that people are not very good
at performing a task that is rarely relevant in the real world.
Naturally, if there is seldom any reason to do something like
update base-rate probabilities using uncertain evidence, people
will not master it.

Experiment 2

Human beings have been shown to be inferior to mathematical
procedures for revising probability estimates when additional
factual evidence is provided.

In a typical experiment!¢ the subject is presented with two
identical-looking bags filled with poker chips. He is told that
one bag contains 70 red chips and 30 blue ones, while the other
bag holds 30 red chips and 70 blue ones. The subject does not
know which bag contains which. A coin is flipped in the presence
of the subject to determine which bag is to be sampled, and a
chip is drawn from that bag. The subject notes its color, the
chip is returned to the bag, and the contents are thoroughly
mixed. Another chip is drawn from the same bag, the subject
again notes its color, and it is returned to the bag. Suppose that
after ten draws the subject has seen six red chips and four blue
chips. The subject is then asked what he now believes are the
chances that the bag selected is the one with 70 red chips and
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30 blue ones. Almost all subjects, realizing that the odds before
the sampling were 50-50 and that now the odds appear to favor
the predominately red bag, answer with odds adjusted in favor
of that bag. But by how much should one adjust the odds, based
on ten observations which split 6-4 in favor of red?

This problem has a precise mathematical answer that is indis-
putable under the hypotheses of the experiment. Most subjects
are surprised to learn that the odds are now better than 5 to
1 that the bag being sampled is indeed the predominately red
one. Almost all subjects adjust the odds much less from 50-50,
putting much too little emphasis on the sample result and too
much on the fact that each bag was equally likely to be the
one chosen. Intuition does not perform well here. The term
conservatism describes the unwillingness of a subject to accord
new evidence the significance it in fact has.

But does the experiment tell us anything about experience-
based real-world behavior? Note that explicit assumptions about
the situation are needed in order to calculate any probability
revisions at all. Usually problems to be modeled assume, among
other things, that (1) the true situation is one of a certain known
set of possibilities (one of two bags for example) and the odds
are known before further evidence is introduced; (2) the true
situation remains fixed rather than changing over time; (3) all
possible pieces of evidence that might be observed can be enu-
merated; and (4) the probabilities of pieces of evidence being
observed, given the true situation, are known and do not change
as time passes. In short, the situation is assumed to be structured
and stationary. The correct probability revision based on addi-
tional evidence is then defined as the revision that is mathemati-
cally correct, given the assumptions of the model. No matter
what the particular assumptions made in order to compare hu-
man beings against models, those assumptions must be made
explicit and held constant to be represented in the model. Be-
cause they are fixed and explicit, the situation will not mirror
the uncertain, nonstationary, unstructured world in which we
live. Probability revisions that might work extremely well in
the real world are not necessarily accurate in the simple world
assumed in the stated problem and the model. Consequently,
all that life has taught us is simply misleading, and the calcula-
tions based on the model, unaffected by real life and reflecting
in exact fashion the assumed environment, produce better per-
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formance than human competitors. Given the world assumed
in the experiment, the human subjects are not experts, and the
fact that they may well be experts in some skill involving real-
world uncertainties actually prejudices their performance.

Experiment 3

Simple mathematical models have been shown to predict the
quality of future academic performance of newly admitted grad-
uate students better than the committee of professors making
the decisions.

One study compares the actual performances of graduate
students in the psychology department at the University of Ore-
gon with the predictions of their performances made by the
four-professor admissions committee.!” Human accuracy was
compared with various simple mathematical models that consid-
ered only three factors: a graduate record examination score,
overall undergraduate grade point average, and a subjective as-
sessment of the quality of the undergraduate school attended.
The predictions made by the models were all better correlated
with observed results than were the committee’s predictions.

Should we conclude that experts are inferior to models when
making decisions? We note, with some embarrassment, that the
professors on such committees meet only once or twice a year,
perform this duty as only one of a great many responsibilities,
are generally too busy with their research and other activities
to spend more than about ten minutes on each case or to follow
up on the results of their decisions, and finally constitute a rotat-
ing committee. Thus, while the individuals who make up admis-
sion committees may have unusual talents, they have no
particular expertise in predicting academic performance and
no special involvement in their committee task. Several of the
shortcomings were indeed acknowledged in the report on the
research performed at the University of Oregon. Others we
know from experience. We have an example here of experts
in one domain performing and being evaluated in another. It
would be interesting to compare the predictive ability of models
against those professionals responsible on a full-time basis for
the admission decisions at elite undergraduate colleges. Our
guess is that full-timers would fare better.
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But the established superiority of computerized mathematical
models to less-than-expert human beings shows us one proper
place for computers in our society. When expertise is nonexis-
tent, too expensive, or locally unavailable, computers can be
programmed to produce better decision-making than inexperi-
enced or less-than-involved human beings.

Experiment 4

People make inconsistent decisions.!® Faced with a hypothetical
choice between (A) being awarded $10 million and (B) participat-
ing in a lottery where there are 10 chances out of 100 of receiving
$50 million, 89 chances out of 100 of receiving $10 million,
and 1 chance in 100 of receiving nothing, most subjects prefer
A, the sure $10 million. Those same subjects are then presented
with the following hypothetical choice: Would you prefer to
participate in (C) a lottery where you have 11 chances out of
100 of receiving $10 million and 89 chances out of 100 of receiv-
ing nothing or, instead, (D) a lottery where you have 1 chance
out of 10 of receiving $50 million and 9 chances out of 10 of
receiving nothing? Here, most subjects prefer choice D. Do you,
like most subjects, prefer A to B and D to C?

Why is this behavior inconsistent? After placing 89 balls repre-
senting the $10 million prize in an urn out of which a ball deter-
mining the payoff is to be drawn, the choice between A and B
is equivalent to the choice between (1) adding 11 more balls
also representing the $10 million prize to the urn or, instead,
(2) adding 10 balls representing a $50 million prize and one
representing zero payoff. Similarly, after placing 89 balls repre-
senting zero payoff in an urn out of which a ball determining
the payoff is to be drawn, the choice between C and D is again
equivalent to the choice between (1) and (2). So interpreted,
in the first case most subjects want the last 11 balls to represent
the $10 million prize, while in the second case, given the same
alternatives for the last 11 balls, most subjects prefer that 10
balls represent the $50 million prize and one ball represent
the zero payoff. Assuming that the choice concerning the last
11 balls should not depend on the first 89 balls placed in the
urn, that is inconsistent behavior. The conclusion to be drawn
is that computational models that avoid such inconsistent behav-
ior are superior to people who exhibit it.
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To argue that people are inconsistent in experiment 4, the
choice between payoffs was reduced to one between two alterna-
tives for the last 11 balls to be placed in an urn by arguing
that the choice shouldn’t depend on the other 89 balls already
in the urn. But this eliminates from any possible relevance all
holistic considerations that might depend on the first 89 balls
as well as the last 11. One such holistic consideration thus auto-
matically omitted is the act of gambling itself, since what does
or does not constitute a gamble, and the extent of the gamble,
depend on the nature of all 100 balls in the urn and not on
only the last 11. If the subjects have feelings about the act of
gambling itself or expectations of feeling guilty, should excessive
greed lead to blown opportunities, and should those feelings
enter into their decision-making, their behavior may well be
beyond reproach. Perhaps choice A is preferred to B because
it guarantees a fortune while avoiding the unpleasantness of
gambling and the risk of perpetual self-recrimination should the
1 in 100 chance of zero payoff occur. Choice D may be preferred
to C because, in this case, the subject must gamble and suffer
the accompanying pain and possible guilt, and feels that lottery
D is superior to lottery C if the pain, common to both, is factored
out. The subjects then behave consistently with respect to their
criterion, and the experiment constitutes no evidence for the
fallibility of intuitive human decision-making.

ONE CAN PRODUCE a long list of individual thought patterns
that are functional in the real world of expertise but, in contrived
experiments, lead to bizarre behavior. For example, in experi-
ments involving unchanging environments, recent events are
treated by subjects with too much emphasis. Yet in the real
world, where the environment clearly changes, that behavior
may well be functional.

When discussing competent decision-making, stage three of
our five-stage model, we explained how a plan causes certain
elements in a situation to stand out and thus makes comprehensi-
ble what would otherwise be an overwhelmingly complex situa-
tion. This powerful cognitive strategy, without which we would
be doomed to beginner understanding and skill, has its risks.
The same situation, seen from two different perspectives, can
look different and dictate different decisions. Ingenious recent
research by Amos Tversky has brought the phenomenon to the
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fore. He shows that various wordings of the same question can
affect perspective and hence decision. If the decision is a choice
between two alternatives, the rewording can produce a reversal
in choice.

Here is a striking example. Imagine that, should nothing be
done, a certain flu will kill about 600 people this year, and you
must choose between two treatment options. Option one will
save about 200 people. Option two will save all of the people
with probability one-third and no people with probability two-
thirds. Which option do you prefer? Answer the question and
then read on. Now imagine the same impending flu epidemic
and that you again have a choice between two options. Option
one will result in about 400 deaths. Option two gives a one-
third probability that none will die and a two-thirds chance that
about 600 will die. Which option do you prefer?

The shift of perspective from doing something good, saving
lives, to one of doing something bad, letting people die, changes
most subjects’ preference between what are really identical
choices. Most subjects will not gamble if a sure gain is attainable
without risk but will gamble to avoid an otherwise sure loss.

These findings can be interpreted as showing a human weak-
ness: If there is a best choice, the wording of a problem should
not change it. Certainly computer models, which lack perspec-
tive, will not suffer from the deficiency. We prefer to regard
the experimental results as interesting elucidations of the price
human beings may have to pay for understanding organized
by perspective, not as evidence that the unorganized under-
standing of the beginner is preferable. And, of course, one must
realize that the skeletal definition of the hypothetical situation
(in our example, the one-sentence description of the impending
epidemic) hardly grounds the subject in reality. Thus whatever
perspective occurs to the subject is tentative at best and more
easily dislodged than one’s perspective of the real world. Accord-
ingly, despite any problems raised by the existence of perspec-
tive, the indisputable fact remains that human skill level
increases when tasks are approached from a point of view.

IN suM, subjects do many strange things in experiments. That,
however, does not demonstrate inappropriate real-world behav-
ior by experts.!? While we make no claims that experts have
been experimentally proved to outperform mathematical mod-
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els when confronted by real-world unstructured problems, we
strongly deny that the available evidence proves the superiority
of rational calculation.

If experiments are to have any direct bearing on the substitu-
tion of computer power for human expertise, they must pit truly
experienced and talented experts against computers or mathe-
matical models within the context of the unstructured tasks that
are required of the experts in the normal exercise of their skill,
and for which there are clear measures of success.?® Most arenas
of skill involve uncertainty, and human learning is more difficult
when the resulting feedback is contaminated by random events.
So, out of fairness to the model, uncertainty should be present
in the problem. Fields of man-machine combat that satisfy such
conditions are not easy to find. The problem given must be
repeatable, because in any environment containing uncertain-
ties a good decision can sometimes lead to a bad result owing
to some improbable chance event. Accordingly, most business
management situations must be ruled out. Furthermore, the
area of comparison should not have an objective or scientific
basis that would allow substituting objective knowledge and
brute-force calculation for human understanding. Chess and card
games become, for this reason, unsuitable subjects for the ulti-
mate confrontation, although it is interesting to see just how
well the computer can do, given the edge. Chess and games
like bridge and poker are so complex that not even the computer
can rely completely on brute-force enumeration of all possibili-
ties. So it is by no means obvious that man eventually will lose
the upper hand here. We shall see later how chess-playing com-
puters, performing immense amounts of enumeration but rely-
ing also on evaluative rules, compare with skilled human players.

What skills are left? Not many, unfortunately. Weather fore-
casting seems an appropriate skill for studying human deficien-
cies and, in fact, has already been investigated extensively.
Significantly, biases found in decontextualized laboratory experi-
ments or in inappropriately chosen real-world tasks did not
appear in those real-world tests.?! Perhaps, subject to a break-
through in biochemical understanding, diagnosing mental dis-
ease based on a full range of personal interviews and tests might
make for a fruitful arena. Another might be the prediction of
performance on a job, should the job be sufficiently important
that a staff of professional interviewers has acquired, through
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“experience and feedback, expertise at prediction. A valid com-
parison might be forthcoming in stock market security analysis,
but the experts would have to be professional analysts and not
brokers. Questions appropriate to the subject’s everyday activi-
ties would have to be asked, and the comparison extended over
enough time to make sure that market behavior during the ex-
periment was typical. Some of those tasks have already been
the subject of comparisons between mind and machine, but in
flawed ways that our suggestions have attempted to circumvent.
In general, experimental results thus far reported do not support
the confidence by aficionados of artificial intelligence or com-
puter modeling.

TABLE 1-1 summarizes what we said earlier about the five stages
in the human skill acquisition process. We shall refer to the
table later as we describe and discuss the attempts of computer
scientists to create intelligent machines. The distinction between
the detached, rule-following beginner and the involved, intuitive
expert is crucial. The advanced beginner’s recognition of situa-
tional elements based on experience rather than rules and the
competent performer’s use of plans and a point of view are
also important. Soon you will discover which of the human capa-
bilities shown have been successfully simulated using digital
computers, which are currently the subject of research efforts

TABLE 1-1. Five Stages of Skill Acquisition

Perspec-
Skill Level Components  tive Decision = Commitment
1. Novice Context-free None Analytical  Detached
2. Advanced Context-free None Analytical Detached
beginner and situational
3. Competent  Context-free Chosen Analytical  Detached under-
and situational standing and de-
ciding. Involved
in outcome
4. Proficient Context-free Experi- Analytical  Involved under-
and situational  enced standing. De-
tached deciding
5. Expert Context-free Experi- Intuitive Involved

and situational enced
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holding some promise of success, and which clearly lie beyond
the reasonable expectations of an artificial intelligence based
on information processing. Then we can draw conclusions about
the possible role of reasoning machines in our future.



CHAPTER 2

LoGcic MACHINES
AND THEIR LIMITS

IT 1S HARD to think about thinking machines. For one thing,
computers become more powerful and cheaper at a dizzying
rate. For another, some well-meaning and well-informed people
tell us that computers are assuredly so literal and inflexible that
they can never be made intelligent, while others in equally au-
thoritative fashion announce that computers are already ex-
perts in some areas and will soon be programmed to contain
all the world’s expertise. Can machines really think? To have
an informed opinion on this important question, one has
to have a firsthand grasp of the nature of human skill and
expertise and an understanding of the way computers are
programmed to perform tasks that ordinarily require intelli-
gence.

Our five-stage skill model, we hope, has helped you to recall
what it is like to be an expert. Now we turn to the computer.
To begin with, we must find out what kind of machine a com-
puter is, what principles have governed its operations through-
out its rapidly changing history, what would be required to
program it to behave intelligently, and what has been accom-
plished so far. Only then will we be able to form a reliable

52
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perspective from which to consider the proper place of thinking
machines in our lives.

Digital computers are basically highly complicated structures
of simple switches, which are either on or off. The theory of
such machines preceded their actual development. Philosophers
like Descartes, Pascal, and Leibniz and mathematicians like
Boole and Babbage sensed the potential power of combining
many simple elements in rule-like ways. So by 1950, when high-
speed digital computers were just beginning to be built, logicians
such as Alan Turing were already accustomed to thinking of
computers as devices for manipulating symbols according to ex-
act rules. The symbols themselves didn’t mean anything. So the

"operations that combined the symbols according to the rules
of logic were meaningless too. They are just formal rules for
transforming formal squiggles.

Computers are general symbol manipulators, so they can sim-
ulate any process which can be described exactly. When digital
computers were actually constructed they were first used for
scientific calculation. But, as noted, by the end of the 1950s
researchers like Allen Newell and Herbert Simon began to take
seriously the idea that computers were general symbol manipula-
tors. They saw that one could use symbols to represent elemen-
tary facts about the world and use rules to represent relationships
between them. Computers could then follow such rules or pro-
grams to deduce how those facts affect each other and what
happens when the facts change. In this way computers came
to be used to simulate logical thinking. We shall call computers
used in this way “logic machines” or “inference engines.”

Newell and Simon believed that computers so programmed
could not only prove theorems in logic but could, in principle,
solve problems, recognize patterns, understand stories, and, in-
deed, do anything that an intelligent person could do. All pro-
vided—and the importance of this proviso has yet to be fully
appreciated—that the symbols in the computer were used to
represent context-independent, objective features of the real
world and that the relationships between those objective fea-
tures obeyed strict rules so that they could be represented in
computer programs. That means the features could not be de-
pendent on interpretation, like a car is going “too fast,” but
had to be specified in a way free of interpretation, like going
“20 miles an hour.” The rules too had to be utterly precise,
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like “shift to second at 20 miles an hour,” not commonsense
rules like, “under normal conditions, shift to second at about
20 miles an hour.”

The precision essential to a computer’s way of manipulating
symbols constitutes both a great advantage and a severe limita-
tion. Since what the symbols in a computer represent must be
absolutely precise, and the programmer must be absolutely clear
as to what he lets each symbol mean, the attempt to write a
computer program inevitably exposes hand-waving, fuzzy think-
ing, and implicit appeals to what everyone takes for granted.
Submitting to this rigor is an immensely valuable discipline.

The analytic power of the computer used as a logic machine
also has its limitations, however. They show up when we consider
the way such computers deal with images and with the recogni-
tion of similarity or analogy. Electronic machines can store an
image as a set of dots and can rotate it so that a human designer
can use the computer to see the same object from any desired
perspective, but in order to know what the image depicts com-
puters have to recognize what objects are in the picture. It has
turned out to be very difficult to program computers to analyze
scenes and recognize the objects in them. Scene-analysis pro-
grams require a great deal of computation and work only in
special cases when just a few objects are involved whose shapes
the computer has been programmed to recognize in advance.

But that is just the beginning of the problem. The computer,
if used to simulate logical thinking, can only make inferences
from lists of facts. It’s as if, in order to read a newspaper, you
had to spell out each word, find its meaning in the dictionary,
and diagram every sentence, labeling all the parts of speech.
Brains don’t seem to decompose either language or images this
way, but logic machines have no choice. Being unable to make
inferences from images, they must decompose them into the
objects they contain and into descriptions of those objects in

terms of their features before drawing any conclusions. In con-
verting a picture into a description, however, much information
is lost. For instance, given a photo one can see immediately
just which objects are between, behind, and in front of which
others. All those relationships must be listed in the computer’s
description, or else the information must be recalculated each
time it is needed.

One could argue that logic machines’ inability to see images
doesn’t matter since images play no role in thinking. But the
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research psychologist Roger Shepard has shown that people actu-
ally use images, not descriptions, in some situations. When asked
to compare two figures, such as those in Figure 2-1, to see if
they are the same, the time subjects take to decide is directly
proportional to how much one figure must be rotated in order
to be superimposed on the other. Moreover, subjects report they
mentally rotate one of the figures to see if it matches the other.

Some drawings similar to those used in Shepard and Metzler's 1971 experiments on
mental rotation. The ones shown in (A) are identical, as a clockwise turning of this
[ page] by 90 degrees will readily prove. Those in (B) are also identical, and again the
relative angle between the two is 90 degrees. Here, however, it is a rotation in depth that
wilt make the first coincide with the second. Finally, those in (C) are not at all identical, for
no rotation will bring them into congruence. The time taken to decide whether a pair is the
same was found to vary linearly with the angle through which one figure must be rotated to
be broughtinto correspondence with the other. This suggested to the investigators thata
stepwise mental rotation was in fact being performed by the subjects of their experiments.

FIGURE 2-1 Mental Rotation Exercise. (From David Marr and H. Keith
Nishihara, ““Visual Information Processing: Artificial Intelligence and the
Sensorium of Sight,” Technology Review, 81, No. 1 [October 1978].
Reprinted with permission from Technology Review, copyright 1978.
Drawings based on R. N. Shepard and J. Metzler, ‘“Mental Rotation of
Three Dimension Objects,” Science, 171 [February 19, 1971]: 701-703.
Copyright 1971 by the AAAS))
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Of course, computers can also rotate images and check to see
if one image can be superimposed on another. Shepard’s experi-
ments were neither for nor against computer simulations. They
were designed to demonstrate that people actually do form and
use images.

The question immediately arose for cognitive scientists: Why
would the time it takes to compare two descriptions be a function
of the difference in orientation between the two images? And
gradually most researchers have become convinced that human
beings form images and compare them by means of holistic pro-
cesses quite different from the logical operations computers
perform.! Some AI workers hope for help from parallel pro-
cessors, machines that can do many things at once and hence
can make millions of inferences per second, but if human image
processing operates on holistic representations that are not de-
scriptions and relates such representations in other than rule-
like ways, the appeal to parallel processing misses the point.
The point is that human beings seem to be able to form and
compare images in a way that cannot be captured by any number
of procedures that operate on descriptions.

Human beings not only compare objects with images but
also use images to predict how events in the world will turn
out. Computers too can use their logical powers to make predic-
tions, but they proceed in an utterly different way. If a person
is told that there is a large box with a small box resting on it
and is then asked what will happen if the large box is moved,
he can imagine the box moving and read off what happens. If
one adds that the small box is tied to the door, he can add
that to his picture of things and again imagine the result.2 A
computer, however, must be given a list of facts about boxes,
such as their size, weight, and frictional coefficients, and facts
about strings such as their elasticity and strength, as well as
how each is affected by various kinds of movements. Given
enough precise information about boxes and strings, the com-
puter can deduce whether the small box will move with the
large one in various conditions. People too reason things out
in the explicit, step-by-step way computers do if they must think
about relationships they have never seen and so cannot imagine.
However, when dealing with familiar situations people proceed
in a way which does not seem to involve listing facts and rules
and drawing logical conclusions at all.
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That people can think by using images while logic machines
can only make inferences from descriptions is only one of the
important differences that must concern us. Another human skill
that logic machines cannot simulate is the ability to recognize
the similarity between whole images. Recognizing two patterns
as similar, which seems to be a direct process for human beings,
is very complicated for a logic machine. Each pattern must be
defined in terms of objective features. Only then can the com-
puter determine whether by some objective criterion the set
of preselected features defining one pattern match the features
defining the other pattern. Take, for example, face recognition.
A person not only can form an image of a face, he can see
one face as similar to another. Sometimes the similarity will
depend on specific features, such as both faces having bright
blue eyes and beards. A computer, if it has been programmed
to abstract such features from a picture of a face, could recognize
that sort of similarity. But in addition human beings can recog-
nize similarity of what might be called aspects of faces. Aspects
are not abstractable elements like blue and beard; rather, judg-
ment or interpretation is required to recognize them. Two faces
might appear to be alike because both have gentle, mocking,
or puzzled expressions. Recognizing that does not involve find-
ing certain features they share. Indeed, there is no reason to
think that expressions have any elementary features. So there
is no reason to assume a logic machine can capture the kind
of similarities, such as those of expression, human beings are
able to discern almost instantaneously.

Douglas Hofstadter, author of Gddel, Escher, Bach, makes
this point graphically when he discusses letter A’s in various
type fonts. Computers, used as logic machines, he notes, must
always decompose letters into a list of features such as “the width
of its serifs, the heights of its crossbar, the lowest point on its
left arm, the highest point along some extravagant curlicue, the
amount of broadening of a pen, the average slope of the as-
cenders, and so forth and so on.”3 Hofstadter argues persuasively,
however, that such a list of features cannot capture human judg-
ments of similarity. He concludes:

[N]Jobody can possess the “secret recipe” from which all the (infi-
nitely many) members of a category such a “A” can in theory be
generated. In fact, my claim is that no such recipe exists.*
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Similarity recognition is so difficult for logic machines that
it is usually neglected, so there have been very few attempts
to write similarity recognition programs. The most successful
such program is generally acknowledged to be Thomas Evans’s
M.LT. doctoral thesis, a program that performs analogical reason-
ing. In his 1966 Scientific American article Minsky says of Evans’s
program that it “displays qualities we usually think of as requir-
ing ‘intuition,’ ‘taste’ or other subjective operations of the mind.”
He goes on to praise the success of Evans’s analysis of the per-
ceived similarity between simple figures into relations between
identical elements:

With his analysis of such operations and his clarification of their
components in terms precise enough to express them symbolically
and make them available for use by a machine, Evans laid a founda-
tion for the further development of programs employing analogical
reasoning.’

The promised development, however, did not take place.
Evans’s work on analogy or similarity is not even mentioned
in a discussion of important contributions to AI published in
the October 1982 issue of Scientific American. ® The latest edition
of The Handbook of Artificial Intelligence notes:

Many key thought processes—like recognizing people’s faces and
reasoning by analogy—are still puzzles; they are performed so “un-
consciously” by people that adequate computational mechanisms
have not been postulated for them.?

How should we envisage such “unconscious computational
mechanisms”? The information processing assumption is that
they are just like our conscious mechanisms, based on rules and
features, but unreachable by introspection and no doubt faster
and more complicated. So information processing theorists think
the unconscious mind of someone seeing a similarity between
two objects must be detecting objective features and then check-
ing in memory for a description of an object having many of
the same features, and the brain must be doing the mechanical,
computer-like processing that underlies those mental operations.

Mechanistic Systems Versus Holistic Systems

There is no evidence for the mechanical model, but it is taken
for granted by Al theorists because it is the way people proceed
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when they are reflecting consciously and because Al theorists
think any alternative must be mystical, that is, antiscientific.
Of course, it would be mystical to say that the mind is some
special sort of substance that does not even exist in space and
so could not be explained in terms of anything material. That
was Descartes’s view, and it still lives on, but we consider this
view implausible. Any modern thinker, we believe, must admit
that whatever the mind does, it does it because of the processing
capacities of the brain. So the question is not whether the mind
is a machine but whether the mind/brain is a machine, that
is, whether the mind/brain is an information processing mecha-
nism. Before we jump to the conclusion that it is, it is important
to realize that there are physical systems that can detect similar-
ity without using any features and rules at all. So as not to become
locked into the information processing prejudice for lack of imag-
ination, it helps to consider how one such device works.

You have no doubt heard of holograms, but you may not
realize how many mindlike properties they can be made to ex-

 hibit, or that neurons have actually been shown to behave in
ways that fit the holographic model.# An ordinary hologram is
made by taking a picture of an object using two beams of laser
light, one reflected from the object to be pictured and the other
shining directly onto the film. The result, unlike an ordinary
picture, looks like a blur all over the negative. Technically it
is an interference pattern, like the pattern of intersecting waves
produced by throwing several pebbles into a pond. When a laser
beam is projected through the blur the entire scene reappears,
projected away from the plate, so that the viewer can see differ-
ent aspects as he changes position (see Figure 2-2).

What first attracted neuropsychologists to the hologram was
that it really is holistic. Any small piece of the blur has the whole
scene in it. If you cut off a portion of the picture and shine a
laser beam through what remains, the scene reappears, a bit
more blurry but all there. For example, if you take a hologram
of a table and cut off one corner and shine a laser beam through
what remains, you do not get a scene with no corner on the
table. The whole table is still there, but with less resolution.
Certain areas of the visual cortex also have that property. When
a piece is cut out, nothing specific is lost from a person’s vision;
instead everything seen is less distinct.? An even more mindlike
property of holograms is that they can be used as an associative



60 MIND OVER MACHINE
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After the laser’s original beam is split (at point a), one part is deflected toward the film
plate and the other is bounced off the object. When the beams reconverge, they form a
light interference pattern that is recorded. The image is reconstructed when a second
beam is reflected off the plate and diffused in the same pattern.

FIGURE 2-2 How a Hologram Works. (© Museum of Holography,
1976.)

memory. If one uses a single hologram to record two different
scenes and then illuminates the hologram with laser light
bounced off one of the scenes, an image of the other will appear.

For us, the most important property of holograms is the way
they detect similarity. For example, one can make a hologram
of this page and then make a hologram of one of the letters
on the page, say the letter F. If one then superimposes the light
beamed through the resulting two holograms, the astonishing
result is a black field in which a bright spot appears at the location
of each letter F on the page. Moreover, the brightness of the
spot is proportional to the similarity between the particular letter
F picked out and the letter F used as the model. Dimmer spots
appear where there are imperfect or slightly rotated versions
of the reference letter. Thus holograms can act as virtually in-
stantaneous similarity recognizers.

What is crucial about this is that the process makes no use
of features. According to the information processing assumption,
a letter F would be recognized by noting that it has one vertical
line and two horizontal lines that intersect but do not cross the
vertical, or some other such set of objective features. But in a
holographic similarity recognition device two whole wave fronts
interact, and the bright spots indicate peaks of energy or reso-
nance. In recognizing similarities that way, the question “similar
with respect to what” does not arise.
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The way a hologram can instantly pick out any occurrence
of a specific letter on a page is reminiscent of the way a familiar
face stands out when you look at a crowd even when you do
not expect the acquaintance to be present. Generally you can’t
give rules using objectively identifiable features such as beard,
glasses, or red hair for distinguishing that face from all other
faces you can recognize. It is possible that such rules are used
unconsciously, but that explanation, while conceivable, is cer-
tainly implausible. To implement a rule-governed procedure,
your mind would have to examine each face in the crowd, detect
its features, and compare them to lists of features describing
each of your acquaintances. Some variation on the holistic model
both is more plausible and fits experience better.

The human mind seems to have the remarkable ability to
recognize whole scenes without decomposing them into fea-
tures, an ability that far transcends current holographic tech-
niques. The mind, unlike holography, can sometimes detect faces
in crowds even with expressions unlike any previously seen on
the face, and sometimes despite dramatic changes such as the
growth of a beard, the acquisition of glasses, or the ravages of
time. While holography provides an instructive example of the
possibility of recognition without using the sort of features and
rules demanded by the digital computer used as a logic machine,
its limited capabilities highlight how little we know about the
workings of the brain.

We take no stand on the question of whether the brain does
or does not function holographically. We simply want to make
clear that the information processing computer is not the only
physical system that can exhibit mindlike properties and that
other devices, such as holographic pattern recognizers, may be
closer analogies to the way the mind actually works.

But haven’t we avoided the mystical only to fall into the
mechanical? What about our title Mind over Machine? How
can we argue that the mind/brain is superior to any mechanistic
system, that is, any machine, while admitting that the mind/
brain is some kind of physical system, perhaps a holographic
one? If you’ve been subtle enough to ask this question you’ll
have to be prepared for a rather subtle and complicated answer.

In order to explain how anything works, three levels must
be taken into consideration: the particle level, the component
level, and the functional level. Anything does what it does thanks
to the physical particles it is made up of and the fact that they
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obey the laws of physics and chemistry. But precisely because
all elements obey physical laws and so behave in the same way,
the basic physical level cannot explain the functional properties
of a machine. In order to explain devices, one has to see how
the basic physical elements are organized into parts or compo-
nents, each of which performs some special task. At this second
level a car can be described as made up of components such
as spark plugs, pistons, crank shaft, wheels, and so on. To describe
a digital computer at this level, one would talk about switches,
circuits, and—still on this level but more organized—central pro-
cessors, memories, and input/output devices. A holographic pat-
tern recognizer would be described in terms of laser, lenses,
and mirrors.

At the third and most important level, the functional level,
one can at last explain how a device does its work. Here, finally,
we can address the question: Is the mind/brain a machine?P De-
vices turn out to do their work in two fundamentally different
ways, which require two fundamentally different kinds of expla-
nation. A machine does its work by dividing up the job among
different components each with its different function and putting
them all together so as to produce a result. So a mechanistic
explanation necessarily involves showing how the components’s
funtions are combined to add up to the functioning of the whole.
Thus one can take spark plugs, pistons, valves, wheels, and the
rest, none of which are self-moving, and connect those compo-
nents in such a way that the whole mechanism is an automobile.
A digital computer, programmed to manipulate symbols, is a
much more abstract and refined mechanism. It is sometimes
called a virtual machine. Its components are not physical parts
but strings of bits functioning as symbols, whose different jobs
consist in representing different features in the problem domain.
Its symbols are put together so that a sequence of logical opera-
tions on them can produce something none of the components
separately could produce, new information. Conventional Al re-
searchers assume that the computer and the brain both function
in this mechanistic way. If that view is correct, the mind/brain
is indeed a machine.

But there are devices which do what they do in an entirely
different way. A holographic pattern recognizer does its work
without dividing up the job between different components.
True, at the second level one can describe the lenses, lasers,
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and so on, and one can explain what job each one does, but
something essential is left out. The actual recognition work is
accomplished by the interference of two beams of light, with
no separate functional components doing any work. In the case
of holograms, the result must be explained directly in terms of
the laws of physics, in this case the properties of optical interfer-
ence patterns. To distinguish such a system from a mechanistic
system we might call such a pattern recognizer a holistic system.
There are many holistic systems around us: light bulbs, lenses,
screws, and levers would be examples. One learns in school that
screws and levers are simple machines, even though they have
no parts, which shows that this important distinction is lost by
our lack of vocabulary, so that we end up calling all physical
systems machines. This makes it seem that, if one denies the
mind/brain is a machine, one must be some sort of antiscientific
mystic. Neither mystics nor mechanists, we hold that all available
evidence is consistent with the view that on the functional level
the mind/brain underlying expertise is a holistic system.

Minds over Logic Machines

Given their rigor, reliability, and indefatigability, computers
used as logic machines do extremely well what human beings
do only poorly. For centuries the military has tried, without
success, to discipline recruits to respond to precise commands
and to follow rules without appeal to interpretation or judgment.
And since the work of Frederick Taylor, factory workers have
been subjected to a similar discipline. But despite the “rational-
ization” of work and its decomposition into precisely specifiable
motions, and despite countless hours spent following preor-
dained steps in rigid order, human beings never attain the preci-
sion of rule-following machines. Human beings, however, exhibit
a flexibility, judgment, and intuition that resist decomposition
into specification and inference and have proved equally difficult
to instill into logic machines. The question therefore is, given
the best programming available now and in the foreseeable fu-
ture, what level of skill can logic machines be expected to reach?

Clearly computers programmed to be logic machines are
ideal beginners. The essence of any such computer is to follow
precise rules for combining objective features. A driving rule
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like “shift to second when your speed reaches 20 mph” or a
chess rule like “trade when the value of the captured piece is
greater than the value of the piece lost” could be learned in-
stantly by a computer and applied at the speed of light. Since
its memory is perfect, a computer never needs practice. It can
get all the rules right the first time. And since it can be pro-
grammed with hundreds of rules relating hundreds of features,
a computer can become what might be thought of as an instant
expert novice in any well-structured and well-understood do-
main. '

Some brain-damaged human beings, like computers, deal
with familiar domains in that completely logical manner. Pa-
tients suffering from a neurological disorder called “agnosia”
exhibit a total dependence upon analysis and rational explana-
tion. For them everything must be decomposed into features
and relationships before it can be understood. For example, a
victim of agnosia presented with a triangular object will first
report that it has three angular corners connected by straight
sides and only then will conclude that it is a triangle. Restricted
to understanding of only this kind, the patient is unable to func-
tion adequately in the everyday world.

When the programmer tries to get the computer to pass to
the advanced beginner level, he encounters his first serious ob-
stacle. Remember, the advanced beginner must be able to recog-
nize repeated, meaningful elements such as the motor sound
when the car is straining to leave first gear or the way the chess-
board looks when the king’s side is weak. Recognizing such situa-
tional elements requires remembering typical examples as well
as the ability to see the current pattern as similar to a remem-
bered one.

A growing new field of psychology is devoted to studying
the role of typical cases in intelligent behavior. Such cases are
called prototypes and accumulating evidence indicates that they
play crucial roles in all sorts of human thought—from logic to
childhood learning.?® “Prototypicality effects,” as the measure-
ment of the role of prototypes is now called, embarrass informa-
tion processing modelers. Why? Because no evidence has been
found that to recognize a current pattern as similar to a prototyp-
ical one, the human mind forms a description of each of the
two patterns and checks for identical features, as would a logic
machine. Rather, so far as the evidence goes, a human being
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has images of many typical cases, and the current pattern is
seen as more or less like one of these. That is, the mind seems
to function not like a logic machine but like a holistic image
device. Even if, at some deep unconscious level, the brain does
match typical cases by using some subtle features no one has
ever dreamed of, that is no help to the programmer, whose
only way of finding such features other than sheer luck has to
be his own introspection and the observation and interrogation
of experts. It follows that the digital computer, used as a logic
machine, cannot reach the stage of advanced beginner.

Although logic machines cannot recognize the situational ele-
ments relied upon by advanced beginners, they can be pro-
grammed to organize their context-free facts in terms of goals,
like a competent human being. The computer can be given a
rule which tells it that if certain facts are present, the situation
should be organized in terms of a certain goal. A medical diagno-
sis program, for example, could be given the strategic rule: If
the white cell count is high, look for evidence of infection. Given
that goal, only certain available facts become relevant. If an
infection is suspected, then facts about the patient’s blood sugar
level can be ignored, while anything about microorganisms in
the blood stream should be evaluated according to appropriate
rules. We shall see that such techniques have actually been used
to produce so-called expert systems, in which the computer’s
precision and speed compensate for its blindness to situational
elements. Such systems perform about as well as competent hu-
man beings.

The move to the last two levels of skill pushes the limits of
logic machines. Proficient performers and experts are not aware
of looking for facts and inferring goals or actions; they are un-
aware of choosing any goals or actions whatever. And with the
shift to involved, intuitive coping, performance is improved dra-
matically. Performers feel and their behavior confirms that they
are able to handle situations in a new rapid and flexible way.
They know that to make the leap to intuition requires a great
deal of experience, but they are not aware of what goes on in
their brain when they do it. People sometimes speak of quieting
the analytic mind and letting the emotional, involved, holistic
right brain do its work.

The information processing model, on the contrary, dictates
that the improved performance results from more and better
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rules of the sort once consciously followed. We believe, however,
that a move to the new level of performance coincides with a
shift from the logical processing of atomic facts to the recognition
without recourse to isolable elements, of the similarity between
a current situation and a stored image-like representation of a
previous situation it resembles. No introspective evidence for
either position exists, since all agree that whatever happens hap-
pens unconsciously. Moreover, there are no experiments that
point clearly either way. We hold that in the absence of evidence
to the contrary, our model, which accounts for the striking shift
to involvement, flexibility, and spontaneity experienced by the
proficient and expert performer is to be preferred on common-
sense empirical grounds to the information processing model.

But this is finally a question to be settled in the laboratory.
A crucial test is to what extent those who accept the information
processing model have been able to capture human intelligence
and expertise in programs that use the computer as a logic ma-
chine. Accordingly, we now turn to an examination of actual
work done in Al laboratories.



CHAPTER 3

ARTIFICIAL INTELLIGENCE: FROM
HiGH HOPES TO SOBER REALITY

Machines will be capable, within twenty years, of doing any work
that a man can do.

Herbert Simon
The Shape of Automation for Men and Management (1965)

There is a tendency in Al today towards flashy, splashy domains. .
Yet there is no program that has common sense; no program that
learns things that it has not been explicitly taught how to learn; no
program that can recover gracefully from its own errors.

Douglas Hofstadter
“Artificial Intelligence: Subcognition as Computation’ (1983)

THE IDEA THAT the digital computer is a general symbol manipu-
lator, and so can be used for making inferences as well as for
calculation, created an exciting new field called Cognitive Simu-
lation (CS). The first five years of work in CS was spent getting
people to verbalize their problem-solving strategies, then pro-
gramming the computer to follow a procedure as similar as pos-
sible to the steps the problem-solver had articulated. The enter-
prise was based on the hope that certain general techniques
human problem-solvers seemed to employ, such as using opera-
tions that reduced the distance between themselves and the
solution, could be abstracted and applied to all cases of problem-
solving. But as our analysis of Newell, Shaw, and Simon’s work
done at RAND led us to suspect, crucial aspects of problem-
solving, such as separating relevant from irrelevant operations,
were left out of the problem-solving programs. Consequently
NSS’s program, called the General Problem Solver and based
on the attempt to abstract the general rules underlying intelli-
gence, worked in only a very limited set of cases.

67



68 MIND OVER MACHINE
High Hopes for Artificial Intelligence

With the failure of the first five-year plan at RAND and Carne-
gie-Mellon University (where Newell had joined Simon on the
faculty), interest shifted from Newell and Simon’s Cognitive Sim-
ulation to what Marvin Minsky and Seymour Papert at M.L.T.
called Semantic Information Processing. Researchers at M.L.T.
abandoned the approach of Newell and Simon for two reasons.
First, the work was based on trying to get the computer to follow
the same steps that a human being seemed to follow to solve
problems. Second, NSS dealt only with games and puzzles, never
with the sort of problems that required knowledge of the real
world. The researchers at M.I.T. were not interested in using
computers, as Simon did, to implement a new kind of empirical
psychology but were willing to use any processing methods what-
ever, plus knowledge about the world, to enable the computer
to solve problems that seem to require real-world understanding
and intuition.

In the introduction to a collection of his students’ Ph.D. theses
entitled Semantic Information Processing, Minsky describes the
heart of the M.L.T. approach:

If we . .. ask ... about the common-everyday structures—that
which a person needs to have ordinary common sense—we will
find first a collection of indispensable categories, each rather com-
plex: geometrical and mechanical properties of things and of space;
uses and properties of a few thousand objects; hundreds of “facts”
about hundreds of people, thousands of facts about tens of people,
tens of facts about thousands of people; hundreds of facts about
hundreds of organizations. As one tries to classify all his knowledge,
the categories grow rapidly at first, but after a while one encounters
more and more difficulty. . . . I therefore feel that a machine will
quite critically need to acquire the order of a hundred thousand
elements of knowledge in order to behave with reasonable sensibil-
ity in ordinary situations. A million, if properly organized, should
be enough for a very great intelligence.?

Looking back from 1983, Jerry Fodor, also at M.LT., quite
aptly describes those early knowledge structures in his recent
book, Modularity of Mind:

[T]he attempted simulations proceeded by supplying machines with
very large amounts of more or less disorganized, highly topic-spe-
cific facts and heuristics. The result was an account of central pro-
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cesses which failed to capture precisely what is most interesting
about them: their wholism. . . . What emerged was a picture of
the mind that looked rather embarrassingly like a Sears catalogue.?

Moreover, even if we had the facts, how would we access
them? To establish that a fact exists in its data banks a computer
must retrieve it. Worse, to establish that some fact is not in
the data bank requires examining the entire list of what the
computer knows to determine that the fact in question is missing.
But, as pointed out by Richard Shaffer in the Wall Street Journal,
the mind clearly doesn’t work this way:

Unlike computers, man’s memory . . . is instantly aware of what
it does—and does not—contain. [N]o list is needed. When were
you born? You know the answer immediately. When was your
mother born? You may not have a ready answer, but you know
that you know the date and will remember it if you think long
enough. . . . When was Thomas Jefferson born? If you don’t know,
you know that you don’t know and that no amount of thinking
will bring the date to mind.3

We offer here no explanation of that amazing human ability,
but its existence dramatically shows the inadequacy of lists or
other data structures now used in Al

Putting commonsense knowledge into the computer and or-
ganizing it so that it could be used when relevant has been
the constant preoccupation of workers at M.I.T., and the task
gradually became recognized as the basic unsolved problem of
Al The problem emerged in three stages. At first the problem
seemed difficult but manageable; after all, we human beings
manage to understand the world and get around in it. Minsky
proceeded with cautious optimism:

As everyone knows, it is hard to find a knowledge-classifying system
that works well for many different kinds of problems: it requires
immense effort to build a plausible thesaurus that works even within
one field. Furthermore, any particular retrieval structure is liable
to entail commitments making it difficult to incorporate concepts
that appear after the original structure is assembled. One is tempted
to say: “It would be folly to base our intelligent machine upon
some particular elaborate, thesaurus-like classification of knowl-
edge, some ad hoc syntopicon. Surely that is no road to ‘general
intelligence.” ”. . . But we had better be cautious about this caution
itself, for it exposes us to a far more deadly temptation: to seek a
fountain of pure intelligence. I see no reason to believe that intelli-
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gence can exist apart from a highly organized body of knowledge,
models, and processes.*

Minsky acknowledged, however, that “the programs described
in Semantic Information Processing will work best when given
exactly the necessary facts, and will bog down inexorably as
the information files grow.”® Was there any reason, then, to sup-
pose that these programs were approaching the “superior heuris-
tics for managing their knowledge structure” which Minsky
believed human beings must have?

Certainly there was nothing in Semantic Information Process-
ing to justify confidence. Minsky criticized NSS’s early programs
for their lack of generality: “Each program worked only on its
restricted specialty, and there was no way to combine two differ-
ent problem-solvers.”® But his students’ solutions were equally
ad hoc. Minsky did not deny this, but added jauntily: “The pro-
grams described in this volume may still have this character,
but they are no longer ignoring the problem. In fact, their chief
concern is finding methods of solving it.”? But there was no
sign that any of the programs presented by Minsky had solved
anything. None of them had discovered any general feature of
the human ability to behave intelligently. All Minsky presented
were clever special solutions, which worked because the real
problems had been put aside.

Indeed, none of the programs in Semantic Information Pro-
cessing showed any generality at all, and none of the procedures
have been generalized as promised. Nor do the programs have
any semantics, that is, any understanding of what their symbols
mean. A program like Daniel Bobrow’s story-problem under-
stander, STUDENT, is so far from semantic understanding that,
as Bobrow himself points out “the phrase ‘the number of times
I went to the movies’ . . . will be interpreted incorrectly as
the product of the two variables ‘number of and ‘I went to
the movies,” because ‘times’ is always considered to be an
operator.”® Nevertheless, Minsky was satisfied with the book:
“[Olne cannot help being astonished at how far [these programs]
did get with their feeble semantic endowment.”®

In retrospect, the game in the second stage seems to have
been to get as far as one could with the appearance of meaning
and flexibility before the real problems had to be faced, and
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then, when one failed to generalize one’s “solution,” to claim
to have at least made a first step. In the words of Minsky:

The fact that the present batch of programs still appear to have
narrow ranges of applications does not indicate lack of progress
toward generality. These programs are steps toward ways to handle
knowledge.1°

The ad hoc character of such work is even more striking in
a program called ELIZA written by the M.L.T. Computer Science
Professor Joseph Weizenbaum. Weizenbaum set out to show just
how much apparent intelligence one could get a computer to
exhibit without giving it “any semantic endowment at all,”
thereby reducing Minsky’s method to absurdity. The result was
a program that imitated a nondirective therapist by such simple
tricks as turning statements into questions: “I'm feeling sad,”
into “Why are you feeling sad?” When the program couldn’t
find a stock response, it printed out statements like “Tell me
about your father.” The remarkable thing was that people were
so easily fooled by such tricks. Weizenbaum was appalled when
some of those interacting with the program divulged their deep-
est feelings and asked others to leave the room while they were
using the program.

We were eager to see a demonstration of the notorious pro-
gram, and because Weizenbaum was the only one in the M.LT.
Al laboratory who would speak to us after the publication of
the RAND paper, we were delighted when he invited us to
sit at the console and interact with ELIZA. We spoiled the fun
however, unintentionally exposing how shallow the ad hoc trick-
ery really was, by typing “I'm feeling happy” and then correcting
ourselves by typing, “No, elated.” At that point ELIZA came
back with the remark: “Don’t be so negative.” Why? Because
it had been programmed to respond with the rebuke whenever
there was a “no” in the input.

It took about five years for the shallowness of Minsky’s stu-
dents’ semantic information processing theses to become appar-
ent. Meanwhile, at Peter Drucker’s suggestion, the controversial
RAND paper was expanded into a book, What Computers Can’t
Do. The book asserted that AI research had reached a dead,
end since it could not come up with any general way to represent
everyday, embodied, commonsense understanding. But just as
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What Computers Can’t Do went to press in 1970, a new ap-
proach to representing commonsense knowledge was developed
at M.LT. If one could not deal systematically with everyday com-
monsense knowledge all at once, then why not develop methods
for dealing systematically with knowledge in isolated subworlds
and then build from that gradually?

Since by all accounts Terry Winograd’s natural language un-
derstanding program, SHRDLU, best exemplifies that “major
advance,” we shall turn to it first. SHRDLU simulates on a TV
screen a robot arm that can move a set of variously shaped
blocks and allows a person to engage in a dialogue with the
computer, asking questions, making statements, issuing com-
mands, within this simple world of movable blocks. An inte-
grated system, the program uses grammatical rules, semantics,
and facts about blocks. It is thus, as Winograd cautiously claimed,
“a computer program which ‘understands’ language in a limited
domain, by including a model of the subject being talked about
and a context of discourse. . . .”1! Furthermore, the program
explored the then new idea of representing knowledge in the
form of procedures—rules for moving blocks, stacking blocks,
and so on.

The dialogue thus made possible is strikingly natural. Here
is a sample. (The sentences in capital letters are computer print-
out. The parentheses contain Winograd’s comments):

1. pick up a big red block.
0K.

(The system answers “OK” when it carries out a command. In order
to pick up the red block, it had to clear it off by finding a space for
the green one and moving the green one away.)

2. grasp the pyramid.
! DON'T UNDERSTAND WHICH PYRAMID YOU MEAN.

(There are three pyramids in the scene, so the program does nothing.)

3. find a block which is taller than the one you are holding and
put it into the box.

(The system has to figure out what is meant by “one” and “it,” as
well as using deduction to decide which block it is holding.)
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10.

BY "IT,"” | ASSUME YOU MEAN THE BLOCK WHICH 1S
TALLER THAN THE ONE | AM HOLDING.

(Printed out to keep us informed.)

0K.

(The hand has to set down the red block to pick up the taller blue
one.)

what does the box contain?

THE BLUE PYRAMID AND THE BLUE BLOCK.

. what is the pyramid supported by?

(Earlier the system responded to “the pyramid” by saying “I don’t
understand which pyramid you mean.” Now, it assumes that we mean
the one just mentioned.)

THE BOX.

. can the table pick up blocks?

NO.

(The semantic rules make this a nonsensical question, which therefore
must be false.)

can a pyramid be supported by a block?
YES.

(The deductive systems finds an actual example, so it knows this is
possible.)12

If being a major advance means being more general than
its predecessors, then SHRDLU is a major achievement. Wino-
grad himself points out the superiority of his effort over earlier
language understanding programs:

A program may succeed by carefully choosing the problem it will
attack, so that some simple special-purpose solution will work.
ELIZA and STUDENT are examples of programs which give im-
pressive performances owing to a severe and careful restriction
of the kind of understanding they try to achieve. If a model is to
be of broader significance, it must be designed to cover a large
range of the things we mean when we talk of understanding. The
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principles should derive from an attempt to deal with the basic
cognitive structures.? '

At the time SHRDLU seemed to be such an attempt. Workers
in Al were certainly not trying to deny that it was SHRDLU’s
restricted domain which made apparent understanding possible.
But they thought Winograd’s restrictions were not ad hoc. They
even had a name for his method of restricting the domain of
discourse. He was dealing with a micro-world. Indeed, what char-
acterized the period of the early 1970s and makes SHRDLU
seem an advance toward general intelligence is the very concept
of a micro-world—a domain that can be analyzed in isolation.
In a 1970 internal memo at M.LT., Minsky and Papert frankly
noted:

Each model—or “micro-world” as we shall call it—is very schematic;
it talks about a fairyland in which things are so simplified that almost
every statement about them would be literally false if asserted about
the real world.™

But they immediately added:

Nevertheless, we feel that [the micro-worlds] are so important that
we are assigning a large portion of our effort toward developing
a collection of these micro-worlds and finding how to use the sugges-
tive and predictive powers of the models without being overcome
by their incompatibility with literal truth.®

Given the admittedly artificial and arbitrary character of micro-
worlds, why did Papert and Minsky think the restricted domains
provided a promising line of research?

They simply had faith that though each area of discourse
seems to open out into the rest of human activity, endless ramifi-
cation is only apparent and will soon converge on a self-contained
set of facts and relations—what Minsky and Papert call a micro-
theory. For example, in discussing the micro-world of bargaining,
Papert and Minsky consider what a child needs to know to under-
stand the following fragment of conversation:

JANET: “That isn’t a very good ball you have. Give it to me and
I'll give you my lollipop.”16

They remark:

[Wle conjecture that, eventually, the required micro-theories can
be made reasonably compact and easily stated once we have found
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an adequate set of structural primitives for them. When one begins
to catalogue what one needs for just a little of Janet’s story, it seems
at first to be endless:

Time Things Words
Space People Thoughts

Talking: Explaining. Asking. Ordering.
Persuading. Pretending.

Social relations: Giving. Buying. Bargaining.
Begging. Asking. Presents. Stealing. . .

Playing: Real and Unreal, Pretending
Owning: Part of, Belong to, Master of, Captor of

Eating: How does one compare the values of food
with the values of toys?P

Liking: good, bad, useful, pretty, conformity

Intention: Want. Plan. Plot. Goal.
Cause. Result. Prevent.

Emotions: Moods. Dispositions. Conventional expressions.
States: asleep. angry. at home.

Properties: grown-up. red-haired. called “Janet”.

Story: Narrator. Plot. Principal actors.

People: Children. vBystanders.

Places: Houses. Outside.

Angry: State

Caused by: insult
deprivation

Results: not cooperative
lower threshold
aggression
loud voice
irrational
revenge

Etc.17
They conclude:

But [the list] is not endless. It is only large, and one needs a large
set of concepts to organize it. After a while one will find it getting
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harder to add new concepts, and the new ones will begin to seem
less indispensable.18

But why suppose that the seemingly endless reference to
other human practices that Minsky and Papert only begin to
spell out will converge to produce simple micro-worlds that can
be studied in relative isolation? It looks like the approach repre-
sents a naive transfer to Al research of methods that have suc-
ceeded in the natural sciences. Winograd characteristically
describes his work in terms borrowed from physical science:

We are concerned with developing a formalism, or “representa-
tion,” with which to describe . . . knowledge. We seek the “atoms”
and “particles” of which it is built, and the “forces” that act on
it.1®

Indeed, physical theories about the universe can be built up
by modeling relatively simple and isolated systems and then
making the model gradually more complex and integrating it
with models of other domains. So much is possible because all
the phenomena are presumably the result of the lawlike relations
of a set of basic elements, what Papert and Minsky call “structural
primitives.”

This idea doesn’t work in Al. There workers confused two
domains, which we shall distinguish as universe and world. A
set of interrelated facts may constitute a universe, like the physi-
cal universe, but it does not constitute a world. The latter, like
the world of business, the world of theater, or the world of the
physicist, is an organized body of objects, purposes, skills, and
practices on the basis of which human activities have meaning
or make sense. Thus one can contrast the meaningless physical
universe with the meaningful world of physics. Subworlds, like
the world of physics, the business world, and the theater world,
make sense only against a background of common human con-
cerns. They are local elaborations of the one commonsense world
we all share. That is, subworlds are not related like isolable physi-
cal systems to larger systems they compose, but are rather, local
elaborations of a whole, which they presuppose. If micro-worlds
were subworlds, they would not have to be extended and com-
bined to reach the everyday world, because the everyday world
would have already been presupposed in programming each
subworld. Micro-worlds, however, are not worlds but isolated
meaningless domains, and there is no way they can be combined
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and extended to arrive at the world of everyday life. By failing
to ask what a world is, a third five-year period of stagnation in
Al was mistaken for progress.2°

By 1973, while gestures were still made toward generaliza-
tion, it was becoming obvious that SHRDLU and all similar mi-
cro-world programs were in trouble. An M.I.T. Al Laboratory
memo admits that “since the Winograd demonstration and the-
sis, several workers have been adding new elements, regulations,
and features to that system. That work has not gone very far.”
Such failures to generalize no doubt lie behind the sober evalua-
tion two years later:

Artificial Intelligence has done well in tightly constrained do-
mains—Winograd, for example, astonished everyone with the
expertise of his blocks-world natural language system. Extending
this kind of ability to larger worlds has not proved straightforward,
however. . . . The time has come to treat the problems involved
as central issues.??

Winograd himself soon gave up the attempt to generalize
the techniques used in SHRDLU. He acknowledged that micro-
world programming techniques cannot be extended to the real
world:

The Al programs of the late sixties and early seventies are much
too literal. They deal with meaning as if it were a structure to be
built up of the bricks and mortar provided by the words. . . . This
gives them a “brittle” character, able to deal well with tightly speci-
fied areas of meaning in an artificially formal conversation. They
are correspondingly weak in dealing with natural utterances, full
of bits and fragments, continual (unnoticed) metaphor, and refer-
ence to much less easily formalizable areas of knowledge.2?

By the end of the 1970s, after trying to write a new knowledge
representation language, KRL, to deal with the central role of
typical cases and similarity in commonsense knowledge repre-
sentation, Winograd “lost his faith” in Al altogether.

Commonsense Understanding
Sober evaluations such as Winograd’s initiated the fourth and

so far final phase of AI work. From roughly 1975 to the present
Al has been wrestling unsuccessfully with what has come to
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be called the commonsense knowledge problem: how to store
and access all the facts human beings seem to know. This prob-
lem has kept Al from even beginning to fulfill Simon’s prediction
made twenty years ago, that within twenty years computers
would be able to do everything human beings can do.

Of course, the representation of knowledge was always a cen-
tral problem for work in Al, but earlier periods—cognitive simu-
lation, semantic tricks, and micro-worlds—were characterized
by an attempt to avoid the problem of commonsense knowledge
by seeing how much could be done with as little knowledge
as possible. By the middle 1970s, however, the difficulties were
being faced. As Roger Schank of Yale remarked: “Researchers
are starting to understand that tours-de-force in programming
are interesting but non-extendible . . . the Al people recognize
that how people use and represent knowledge is the key issue
in the field.”2

Minsky predicted a generation ago, in 1967, that “within a
generation the problem of creating ‘artificial intelligence’ will
be substantially solved.”?s The most dramatic way to see how
early high hopes for Al turned to sober evaluation is to contrast
Minsky’s recent remark to a reporter: “The Al problem is one
of the hardest science has ever undertaken.”?¢

A recent (October 1982) Scientific American article confirms
that the commonsense knowledge problem has stymied Al for
at least a decade. The article, in which with one exception?’
all the research reported was work done more than ten years
ago, concludes:

Probably the most telling criticism of current work in artificial intel-
ligence is that it has not yet been successful in modeling what is
called common sense. [Slubstantially better models of human cogni-
tion must be developed before systems can be designed that will
carry out even simplified versions of common-sense tasks.?®

The decade-long impasse has recently given rise to a promis-
ing reaction. There is growing interest in the commonsense
knowledge problem itself, which has made apparent two deep
philosophical issues that AI has been refusing to face.

There are really two different problems lumped together un-
der the commonsense knowledge problem. Each highlights an
aspect of human understanding that the heuristically pro-
grammed computer seems unable to copy; that is, each problem
appears insoluble using the current methods of AlL. We shall
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call those two problems the problems of commonsense under-
standing and of changing relevance. As noted, micro-world
work avoided both problems instead of contributing to their
solution, and so had to be abandoned as an approach to general
intelligence. It then seemed for a time that new data structures
called frames and scripts would come to the rescue, but we
shall see why they too have resulted in little progress. Indeed,
although early micro-world work is turning out to have practical
applications that create the illusion of exciting new develop-
ments, the two problems have brought conventional theoretical
Al to a halt.

We can understand how the problem of commonsense under-
standing arises when we reflect that the computer comes into
our world even more alien than a Martian. It does not have a
body, needs, or emotions, and it is not formed by a shared lan-
guage and other social practices. If the machine is to interact
intelligently with us, it has to be endowed with an understanding
of the human form of life. What we understand simply by virtue
of being human—that insults make us angry, that moving physi-
cally forward is easier than moving backward, that we can pass
by things by moving toward them and then away from them,
and that time constantly passes and future events become past
events—all this and much more has to be programmed into
the computer as facts and rules. As AI workers put it, the com-
puter must be given our belief system. This, of course, assumes
that the understanding in our emotions, our bodies, and our
social practices is made up of beliefs, so that the computer could
be told all the facts we supposedly believe.

The supposition that everyday understanding is produced by
reasoning from facts we know creates the first unsolved prob-
lem: How can a computer be made to store and access the mass
of beliefs about human beings and their world that it must have
if it is to share our commonsense understanding? That is not
just a problem of size and complexity, but a problem of what
language to use to store the facts. Unless they can be stored in
a totally explicit and context-free form, the computer cannot
use them because the problem of commonsense understanding
will reappear. In his recent Scientific American article on Al,
Douglas Lenat reports the discovery of this difficulty:

Ideally an entire encyclopedia would somehow be stored in com-
puter-accessible form, not as a text but as a collection of thousands
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of structured, multiply indexed units. Preliminary work toward this
goal by a few investigators has revealed that it is even more elusive
than it sounds: the understanding of encyclopedia articles itself re-
quires a large body of common-sense knowledge not yet shared
by computer software.??

But Lenat does not plumb the real depth of the problem
here, for even if the facts were stored in a context-free form
the computer still couldn’t use them. To do that the computer
requires rules enabling it to draw on just those facts which are
relevant in each particular context. Determination of relevance
will have to be based on further facts and rules, but the question
will again arise as to which facts and rules are relevant for making
each particular determination. One could always invoke further
facts and rules to answer this question, but of course these must
be only the relevant ones. And so it goes. It seems that AI workers
will never be able to get started here unless they can settle
the problem of relevance beforehand by cataloguing types of
context and listing just those facts which are relevant in each.

To put the same problem in another way: The sort of rules
human beings are able to articulate always contain ceteris pari-
bus conditions, that is, the rules are applicable “everything else
being equal.” What “everything else” and “equal” mean in any
specific situation, however, can never be fully spelled out since
one can only give further rules with further ceteris paribus con-
ditions. Moreover, there is not just one exception to each rule
but several, and all the rules for dealing with the exceptions
are also ceteris paribus rules. So we not only get a regress of
rules for applying rules but an exponential explosion of them;
the number of rules required multiplies at an ever increasing
rate. For example, a general rule of chess is to trade material
when ahead material. However, exceptions include the rule that
it should not be applied if the opposing king is much more cen-
trally located than yours, or when you are ahead but an opposing
pawn is about to promote, or when you are attacking the enemy
king, and so on. But there are in turn exceptions to each of
those exceptions; for example, the pawn-about-to-promote rule
can be ignored if the piece it is to become can be captured
immediately. A computer programmer’s failure to include one
such exception-rule was exploited by the chess master David
Levy in an important match, which we shall discuss later.

A related problem arises because in the real world any system
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of rules has to be incomplete. Consider the California vehicle
code. In any encounter between an auto and a pedestrian, the
code grants the right of way to the pedestrian, and so we might
think the matter is settled. But, in fact, certain “judgment calls”
remain for the driver, the pedestrian, and ultimately the judge.
The pedestrian normally has the right of way, but he shouldn’t
jaywalk through heavy traffic, but if blind he always has the
right of way, and so on. And if the “pedestrian” is a skateboarder,
does he remain a pedestrian in the eyes of the law? When do
other circumstances impinge? And which?

The law always strives for completeness but never achieves
it. “Common law” helps, for it is based more on precedents
than on code. But the sheer number of lawyers in business tells
us that it is impossible to banish ambiguity and judgment by
specifying a code of law so complete that all situations are speci-
fied and prejudged.

Ceteris paribus conditions and incompleteness are not merely
annoyances showing analysis to be what Edmund Husserl, a
philosophical precursor of Al, called an “infinite task.” Rather
those problems point to something taken for granted: namely,
a shared, human background that alone makes possible all rule-
like activity. To explain our actions and our rules, we must even-
tually fall back on our everyday practices and simply say “this
is what one does” or “that’s what it is to be a human being.”
Thus in the last analysis all intelligibility and all intelligent behav-
ior must hark back to our sense of what we are, which is, neces-
sarily, on pain of regress, something we can never explicitly
know.

Some of what we are, like having a body with certain capaci-
ties, is innate, but even what is learned need not be learned
as facts. Human beings, as we said earlier, learn how to act in
the world by seeing the similarity of the present situation to
some typical past experience. For beings who can acquire that
kind of “know-how,” which need not be represented as “know-
ing that,” there is no commonsense knowledge problem. You
can learn to swim by practicing the necessary patterns of re-
sponses, without having to represent your body and muscular
movements in some data structure. Likewise what you “know”
about the cultural practices that enables you to recognize specific
situations and act appropriately within them has been gradually
acquired through imitation, trial-and-error, and training. No one
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ever did or could, again on pain of regress, make explicit in
terms of facts and rules what you have learned.

The commonsense knowledge problem, a result of trying to
turn human know-how into computable knowing that, was the
first way the problem of making a computer act in a human
world without having human capacities manifested itself in AL
More recently a related problem has surfaced: the problem of
dealing with change.

Changing Relevance

In general skilled human beings have in the areas of their exper-
tise an understanding that enables them, as events unfold, to
distinguish what is relevant from what is not. However, during
the first three phases of Al research, from cognitive simulation
up through work on micro-worlds, computers, like beginners,
advanced beginners, and competent performers, were pro-
grammed to confront all facts as isolated from each other and
goals as just further facts. Thus whenever a change occurred
the whole set of facts that made up the computer’s representa-
tion of the current state of affairs had to be recalculated to update
what had changed and what remained the same. The attempt
to capture human, temporal, situated, continuously changing
know-how in a computer as static, de-situated, discrete, knowing
that has become known as the frame problem. It has been de-
fined as “the problem of finding a representational form permit-
ting a changing, complex world to be efficiently and adequately
represented.”3® More specifically, it is the problem of represent-
ing in some systematic way that as time passes and/or actions
are performed, some but not all facts change and only a few
of the changes are relevant to current action.

To understand the frame problem we need to review the
various ways of updating the computer’s knowledge of the
changing situation that have been tried:

1. Early programs such as GPS explicitly specified all possible
situations and the new situation that would result from each
possible action. But for all but the simplest problems that ap-
proach is not workable, because there are too many possible
situations and actions.

2. Purely deductive systems use rules of logic to deduce the
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new state of affairs and the action to be taken. Rules which
researchers called frame axioms were then required for updating
each fact about the situation that changes and for each fact that
remains unchanged. But as Lars-Erik Janlert points out: “Clearly,
this way of modeling is not practical in a more complex problem
world; the frame axioms will occupy all space and the deductions
of non-changes all time.”3!

3. Next, programmers tried constraining the use of deductive
logic by adding the nondeductive rule: Whatever is not deduced
by means of a frame axiom to have changed is assumed to remain
the same. But it was discovered that what changes because of
an action often depends on many facts about the current state
of affairs, so frame axioms had to be specified for many different
states of affairs. Again, in complex situations there are just too
many.

4. The most plausible proposal seems to have been made
simultaneously in several quarters of the AI community as ex-
tending micro-worlds led to overwhelming lists of frame axiom:s.
The idea was to group many similar situations into a single class.
One could then specify for each class just those facts which were
typically relevant and general purpose rules, valid for all situa-
tions encountered in the class, for how the facts were normally
changed by an event. Minsky called such data structures
“frames,” and describes them as follows:

A frame is a data-structure for representing a stereotyped situation,
like being in a certain kind of living room, or going to a child’s
birthday party. . . . Much of the phenomenological power of the
theory hinges on the inclusion of expectations and other kinds of
presumptions.3?

Roger Schank proposed similar structures, called scripts, in
which the attempt to account for change is even more obvious:

We define a script as a predetermined causal chain of conceptualiza-
tions that describe the normal sequence of things in a familiar situa-
tion. Thus there is a restaurant script, a birthday-party script, a
football game script, a classroom script, and so on.33

Schank’s illustration of the restaurant script spells out the
normally relevant facts and their normal sequence in a restau-
rant situation:
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Script: restaurant
Roles: customer; waitress; chef; cashier
Reason: to get food so as to go down in hunger and up in pleasure

Scene 1 entering

go into restaurant
find table

go to table

sit down

Scense 2 ordering

receive menu

look at it

decide on order

tell order to waitress

Scene 3 eating

receive food
eat food

Scene 4 exiting

ask for check

give tip to waitress
go to cashier

give money to cashier
go out of restaurant3

This representation of restaurant behavior is a sequence of
simple situations each with its own small set of relevant facts,
so here the problem of changing relevance does not arise. But
the script cannot comfort AI researchers, for it has in effect
simply avoided the problem of continuous, branching, real-world
change by substituting a sequence of static micro-worlds. The
restaurant script may work fairly well for understanding simple
stories about restaurant dining, for which it was intended, but
it leaves out the complex way restaurant dining changes through
time. We do not simply enter, order, eat, and leave. After we
enter, we might or might not wait to be seated, and then we
might or might not study a menu, for example. Schank recog-
nizes that his initial script is much too skeletal and discontinuous
and now acknowledges that there are various tracks for various
sorts of restaurants and that there are many subscripts that need
to be added to fill out his account:
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In order to schematically represent just one track of the restaurant
script we have left out considerable detail and many possible options
in each of the scenes. We have excluded entire scenes such as the
wait to be seated scene. . . . certainly there is room for a seeing
someone you know scene, for example, as well as a meeting someone
new scene. Some of the sideline events at a restaurant also can
be scripts in their own right. For example, a paying by credit card
script is a fairly simple script that is called up in many places besides
restaurants.3%

That is the typical way researchers in Al proceed. One first
introduces a manageable, computational account of a domain,
then adds complications as they are needed to account for what
people can do. But, of course, as one adds more and more sub-
scripts, each with its preselected relevant features and its own
subscripts, the complexity of the whole account rapidly increases.
It is purely an act of faith on the part of Al researchers like
Schank that such a model can capture human restaurant behav-
ior before the formalistn becomes hopelessly complicated. The
simple version is easily manageable. But that is no evidence it
is a successful first step toward human understanding.

Even if one shares Schank’s faith that scripts can eventually
capture the stereotypical side of restaurant behavior, with the
proliferation of frames comes the question: How does one move
from one frame to another? To keep to the restaurant example,
suppose in the “seeing someone you know” frame the conversa-
tion with that person gives you new information. The friend
might tell you that an old friend is in town for only one more
hour, or that he just saw your small child running down the
street unescorted, or that the sashimi just made him sick, or
that a company in whose stock you hold a short position is about
to become the object of a takeover, or that someone you are
trying to avoid is eating in the next room, and so on. Each bit
of news would set you off in a different direction. From the
frame point of view the next frame would be either leaving as
soon as possible, running out of the restaurant, ordering only
cooked food, telephoning your broker, or asking for a table on
the terrace. In order to give the computer the capacity to cope
with this kind of change, the frame approach would have to
include rules for how to select a next frame. It seems incredible,
and indeed no one has even tried to provide such rules.

Even if the problems of frame proliferation and frame change
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could be solved, it is a huge leap to Schank’s claim that “the
restaurant script contains all the information necessary to under-
stand the enormous variability of what can occur in a
restaurant.”® Schank doesn’t even try to deal with the question
of motivation. Yet to make sense of restaurant behavior one
has to understand not only what people typically do in eating
establishments but why they do it. Thus, even if he could manage
to list all that was possibly relevant in typical restaurant dining,
we would be left with no understanding of what at any point
in time was actually relevant for the person involved.

Going to a restaurant is like most everyday situations. We
face a continually branching web of possible situations, each
of which is sized up in terms of some issue. Only then do the
actually relevant facts show up as salient. For example, if you
go out to eat in Berkeley, you have a choice between smoking
and nonsmoking sections. What might become relevant here
includes, among other factors, whether a table is free in the
section one prefers and, if not, at what stage of their meals the
current customers are. Moreover, which of those factors actually
becomes important to you depends on how hungry you are,
how rushed, how comfortable the waiting area is, and many
other things. As time passes, all such factors continually change.
One’s concerns also change, and with them one’s sense of which
factors are relevant. After you move to a table, you consider
the question of who sits where, which introduces new factors
such as comfort, view, sex, and age—all of which have no fixed
relevance but whose importance again depends on your perspec-
tive. And when you order, you do not summon up a fixed frame
in which everything relevant has been determined once and
for all. Some possible concerns are: What is fresh, how long it
takes to prepare, how much it costs, what you ate earlier that
day and expect to eat later that day, what dietary principles
you follow and how strictly. This open-ended list sets out what
might be important to you, but only your sense of things, gained
perhaps by talking to the waiter, and your past experience of
restaurant dining determine what is actually relevant as you
decide what to eat.

To bring out the proper place and limits of the frame ap-
proach, one can contrast restaurant dining with a situation in
which static, discrete scripts might work nicely. That situation
would, of course, have to be completely defined by a discrete
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and limited set of features that would permit only a discrete
and limited set of responses. Moreover, motivation would play
no part, because at each stage in the script there would be a
right thing to do. Thus no expertise would be required or ac-
quired, there being no question of seeing the issue in the current
situation or of passing from issue to issue as events unfold. Placing
a phone call may well constitute such a situation. It is so simple
that no strategy is needed, and there is one right way to do
things. Thus the frame problem is finessed simply by using a
frame that lists all possible events and the appropriate reaction
to each. For example, a super-smart modem could store some
sort of frame for typical phoning situations, including misdialing,
busy, wrong number, changed number, unlisted number, mal-
functioning phone, no answer, poor connection, crossed lines,
cut off, answering machine, successful connection, and so on.
.With each could be paired an appropriate response or set of
responses. Eventualities not relevant to making a phone call
need not be considered at all. True, when placing a call the
phone ceases to be free to outside calls; the dial tone cuts off
and gets replaced by beeps; something happens in a computer
at the central exchange, and so forth. But those do not affect
making an ordinary phone call. Such possibilities might be listed
in the frame of a robot programmed for phone repair, but they
are not something a person has to check out each time he or
she dials a call.

Being electronic devices, phones lend themselves to modular
designs—that’s what makes a phone repair robot, or at least a
phone fault diagnosis program, a possibility. But a mechanical
device even as simple as an automobile has a high number of
interacting components, connected together in ways that pro-
duce complex and synergistic patterns of breakdown, with multi-
ple and poorly delimited submodules each capable of occupying
a continuum of states between proper and improper functioning.
Accordingly, no set of frames can capture the knowledge neces-
sary for expert diagnosis. Indeed, to the extent that any elec-
tronic device has such properties, it too will resist expert
automated diagnosis.

The shifting relevance of aspects of ordinary changing situa-
tions would certainly be grounds for despair in Al and Cognitive
Science, were it not for the fact that human beings get along
fine in a changing world; and so these researchers assume human
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beings must somehow be able to update their formal representa-
tions. This gives comfort to Al researchers who think it shows
the frame problem must be soluble. We, however, hold that it
can more plausibly be read as showing that human, skillful know-
how is not represented as a mass of facts organized in frames
and scripts specifying in a stepwise sequence which facts must
be taken account of as the state of affairs evolves. Rather, as
we saw when describing proficient performers, memories of our
past experience with situations similar to our present one and
our ability to recognize this similarity seem sufficient to account
for our ability to cope with change. The important point is that
we human beings proceed from the past into the future with
our past experience always going before us organizing the way
the next events show up for us. So we do not need to deal with
real-world situations by listing in advance all possibly relevant
features plus rules for determining under what circumstances
each feature may become actually relevant, and rules for when
these rules are relevant, and so forth.

According to our account, the proficient performer sees di-
rectly what is relevant in his current situation because the cur-
rent situation calls up a similar experience from the past, already
“gestalted” in terms of issues. But this at first glance seems very
mysterious. If the current state of affairs were not given in terms
of issues until it is seen in terms of a past situation how would
the brain detect the similarity of a current meaningless state
of affairs encountered in the real world which has not yet been
seen in terms of salience, to a stored meaningful situation al-
ready organized in terms of what is important?

If we stood outside the world and represented states of affairs
as meaningless objects, situational similarity recognition would
be mysterious, indeed. However, we are generally already in
a meaningful situation. Except perhaps when awakening in the
morning, we do not normally come upon situations in a void.
Even when we first wake up, we somehow automatically view
the situation as similar to a paradigmatic wake-up situation cre-
ated by prior experiences and stored in memory, causing us to
see certain aspects related to washing and dressing. From then
on throughout the day we move gradually from situation to situa-
tion, always entering a new one from the perspective of the
old.

When we are in a situation, certain aspects stand out as salient,
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and many others go unnoticed. When salient aspects change
their character—for example, if a smiling expression changes
to a smug one or an anticipated interest rate of 13 percent drops
to 12 percent—the current situation may not be as similar to
the current guiding paradigmatic situation as to some other para-
digmatic situation, which has roughly the same salient aspects
but matches better. That new situation then becomes guiding.
As we have said, we believe this similarity recognition is accom-
plished in a holistic fashion not using feature detection. Certain
aspects of the new paradigmatic situation that now guides behav-
ior will have more or less salience than in the old one, and
other aspects that were of no significance in the old guiding
paradigm may now acquire some importance. Thus the rele-
vance of aspects gradually evolves. No detached choice or delib-
eration is involved in the evolutionary process.

Sometimes the occurrence of an anticipated event rather than
the changing of a salient aspect triggers a new understanding.
Should any anticipated event actually occur, it will be seen as
salient in the present situation. This modified present situation
will then resemble a previously experienced situation which will
determine appropriate new plans and anticipations. The way
one sees one’s new situation may differ only slightly from the
way one was just seeing the previous situation or it may differ
greatly depending on the nature of the event that triggered
the change.

The frame problem—the problem of keeping track of all facts
affected by all changes—shows the difficulty of substituting the
computer’s static, discontinuous, flat descriptions for the human
capacity to transform past experience into a continuous view
of changing relevance. Unless Al scientists can produce pro-
grams in which representations of past experiences encoded in
terms of salience can directly affect the way current situations
are organized, they will be stuck with some version of the frame
problem and be unable to get their computers to cope with
change.

In his Scientific American article Lenat points out, quite in
line with the views presented here, that what computers lack
is the ability to learn from experience and to apply what they
know by recognizing the similarity of past experience to the
present situation. This problem literally throws the computer
scientist for a loop:
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On the one hand, computer programs will have to become a lot
more knowledgeable before they will be able to reason effectively
by analogy. On the other hand, to acquire knowledge in such bulk
it would seem that computers must at least be able to “understand”
analogy when it is presented to them. . . . The problem is thus
of the chicken-and-egg sort.3?

Lenat acknowledges that no one knows how to program a com-
puter to take account of similarities, to “reason” by analogy as
he tendentiously puts it, and falls back on the usual “first step”
claim plus an empty gesture toward future research:

A little introspection and an attentive ear are all it takes to realize
that people draw on analogy constantly in explaining and under-
standing concepts and in finding new ones. This source of power
is only beginning to be exploited by intelligent software, but it
will doubtless be the focus of future research.3s

As long as the use of images and analogy remains a vague prom-
ise, heuristically programmed digital computers will not be able
to approach the way human beings cope with changing rele-
vance.

The outlook for Al is grim indeed. As we saw earlier, comput-
ers, programmed as logic machines, cannot use images or any
picturelike representations without transforming them into de-
scriptions. Likewise, logic machines cannot deal with similarity
except by analyzing it into a list of identical features. There is
no reason to hope that one can use the computer’s capacities
for making logical inferences from unambiguous facts and for
matching exactly defined features with other exactly defined
features to produce the sort of comparison of whole images that
yields judgments of similarity.

Al Without Information Processing

The digital computer, when programmed to operate by taking
a problem apart into features and combining them step by step
according to inference rules, operates as a machine—a logic ma-
chine. However, the computer is so versatile it can also be used
to model a holistic system. Indeed, recently, as the problems
confronting the Al approach remained unsolved for more than
a decade, a new generation of researchers have actually begun
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using computers to simulate such systems. It is too early to say
whether the first steps in the direction of holistic similarity recog-
nition will eventually lead to devices that can discern the similar-
ity between whole real-world situations. We discuss the
development here for the simple reason that it is the only alter-
native to the information processing approach that computer
science has devised.

Recall our description of skill acquisition: The expert remem-
bers a great number of concrete situations, can apparently with-
out searching through all remembered situations recognize a
new and somewhat different situation as similar to one of them,
and has learned from experience to associate an action, decision,
or plan as well as various expectations with each remembered
situation. A computational device with these abilities would rep-
resent a monumental step toward a genuine artificial intelli-
gence. Remarkably, such devices are the subject of active
research. Indeed, distributed associative memory systems having
the required holistic properties can actually be simulated on
digital computers. When used to realize a distributed associative
memory, computers are no longer functioning as symbol-manip-
ulating systems in which the symbols represent features of the
world and computations express relationships among the sym-
bols as in conventional Al Instead, the computer simulates a
holistic system.?®

There are at least two quite different approaches to the design
of distributed associative memories. One, called holographic, is
based on the mathematical description of holography. Here, an
input “scene” and its associated output is converted to a very
different representation by a mathematical transformation called
a convolution. The convolution produces something akin to the
interference pattern stored on a negative in optical holography
in that no one element of the convolution corresponds to an
element of the input or output, but the input-output pair is
distributed throughout all of the elements of the convolution.
This distributed representation is combined with distributed rep-
resentations of all previously learned associated pairs already
in memory so that all share the same computing elements. The
resulting memory trace has several remarkable brainlike proper-
ties. If an input scene which is one member of an associated
input-output pair is combined with the trace using a mathemati-
cal formula called a correlation, the other member of the associ-
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ated pair is produced. This happens even if the input scene is
only a significant part of the original whole scene, or is similar
but not identical with the original scene. A scene can be anything
that can be represented as a string of digits. At one extreme,
the most common, the scene is a digitized representation of a
picture with the digits representing the light intensity at various
points. At the other extreme, if one chooses to see the world
in terms of a typical Al description, it can be a representation
of features that are present and absent in a situation. But even
in the latter case, features are not stored as lists in distinct loca-
tions or processed according to recognizable rules.4°

A second approach to the design of distributed associative
memories is based on a neuron-net model of the brain. A digital
computer imitates such a net by simulating simplified neurons
and strengths of connections between them. Such systems func-
tion like a soap bubble—an entity composed of molecules each
physically attached only to its immediate neighbors and sensitive
only to local forces—which is nonetheless formed by the interac-
tion of all the local forces so that the whole determines the
behavior of the local elements. Given an input, activity spreads
among the simulated neurons according to an arbitrary rule
based on strengths of connections, and eventually produces an
output. To achieve a memory of an association between an input
and output pair, the strengths of connections are suitably modi-
fied. The modification is tricky since the adjusted strengths must
not only result in the new input yielding the new output, but
all previously learned inputs for which connection strengths
have already been adjusted must still yield their correct outputs.
The strengths of connections constitute the associative trace and
allow the associations to be recreated rather than located some-
where and later retrieved as in conventional Al. As in the case
of associative holographic memory, inputs and outputs can be
anything from digitized pictures to representations of features
present and absent. But individual neuronlike units and connec-
tions represent neither individual features nor associations.*!

What if the brain were organized, at least in part, as a dis-
tributed associative memory? To be concrete, let us speculate
about our ability to recognize a friend’s face rapidly, even seen
with a different expression or from a different angle than ever
before—a task currently well beyond the capability of conven-
tional Al. The neurons and connecting nerves in a certain area
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of the brain might store, in distributed form as a memory trace,
associations between images of familiar faces and names. Many
such associations might be stored for each friend’s face—each
with a different typical expression or seen from a different angle.
When we see the face, the light-intensity pattern would interact
with the memory trace, and if it approximated any of the images
that created the trace, the associated name would come to mind
~as the output. All known faces would share the same memory
trace, and one interaction of input and trace would produce
the output. No features would be detected or lists searched.

This speculation seems less than fantastic if one considers
an experiment performed in Finland using a fairly unsophisti-
cated distributed associative memory employing mathematics
based on storing and modifying strengths of connections. The
faces of ten people were each photographed five times, once
from each of five different angles. Each of the fifty photographs,
represented by their light intensities at many specified points,
was associated with a bar in a bar graph as output. The location
of the bar was different for each person, so the five views of
each person were all associated with the same bar, but each
person was represented by a different bar. A distributed memory
trace was formed, which stored all fifty face-name pairs. A pic-
ture was then taken of one of the original ten people from an
angle different from that of the previous five photographs. Its
intensity pattern was combined mathematically with the mem-
ory trace. The outcome was a bar graph with various heights
of bars corresponding to how much the input resembled each
of the ten people. The height of the bar corresponding to the
person actually photographed was many times higher than
the other nine bars. Thus the system correctly identified the
person.4?

Impressive as this achievement is, it nonetheless highlights
two major problems that must be solved before distributed asso-
ciative memories can be developed that have human intuitive
capacities. The face that was successfully recognized had to be
the same size and in the same orientation to the vertical as
the reference figures. To approach human capacities some tech-
nique would have to be developed by means of which memories
and new inputs could all be converted to a standard form. Tech-
niques for normalization are already being developed in pattern
recognition engineering.
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The problem of normalization of visual images is trivial, how-
ever, compared to the second problem. Can experts describe
for storage in computers their memories of typical lived situa-
tions so the computers can likewise be experts? Light and shad-
ows on a face can easily be digitized, but how can we enter
into a computer the pattern of saliences, expectations, and emo-
tional colorings, such as hopes and fears, that characterize a
remembered whole situation? It is just because no one has the
slightest idea how such experiences could be stored in distrib-
uted associative systems that cognitivists feel justified in adopt-
ing the implausible view that what we remember are descrip-
tions.

The neuron-net approach should not be confused with a con-
nection-based procedure also using spreading activation now be-
ing investigated by Jerome Feldman and others. This third
approach, like the two approaches based on distributed associa-
tive memories, dispenses with heuristic rules that manipulate
symbols one after another. Like conventional Al, however, Feld-
man’s symbols always represent context-free features of the real
world and, unlike the other two approaches, he uses rules speci-
fying relationships between symbols.43

Feldman’s approach is sometimes lumped together with the
neuron-net model under the term “new connectionist” despite
their fundamental differences, since both stress connections of
elements. Given our account of expertise as based on holistic
representations rather than features and rules, we see the con-
nectionism of distributed associative memories as really new
and promising, while Feldman’s approach is at best an improved
model of the analytic reasoning used by beginners. Not that
analytic reasoning should be ignored: Any intelligent computer
must both be able to respond to holistic similarities and to make
inferences involving symbols, just as, if we are to believe some
brain researchers, the holistic right brain and the logical left
brain are both involved in human intelligence.

All three models share one important feature rarely found
in the highly sequential reasoning procedures of conventional
Al The computations involved can be done in parallel; that is,
many different things can be going on at once, as is apparently
the case in the brain.

Like all those advocating parallel processing, Douglas Hof-
stadter is critical of the conventional Al approach to intelligence.
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His counterproposal is subtle and complex and so is our disagree-
ment with him. But if you have made it through Gddel, Escher,
Bach, you may want to struggle through the next few pages.
Hofstadter shares with the new connectionists and with us the
conviction that one cannot capture intelligent behavior and ex-
pertise using the sort of context-free facts and rules that begin-
ners consciously employ when they reason. He therefore breaks
with heuristic rules as well as with Feldman’s relationships be-
tween context-free symbols. But he still supposes that the mind
processes symbols—context-dependent ones. Hofstadter specu-
lates that thinking is produced by what he cryptically calls
“strange loops” and tangled hierarchies, with all symbols de-
pending on and affecting other symbols. In his words, “symbols
activate other symbols and all interact heterarchically.”*¢ While
avoiding the introduction of context-free features, he still main-
tains that all thinking involves a level of symbol manipulation
where “the triggering of some symbol by other symbols bears
a relation to events in the real world . . . while a group of neu-
rons triggering another neuron corresponds to no outer
event. . . .74

Hofstadter argues that the symbol manipulation level, while
dependent on the neuron level, is necessary in order to mediate
between the brain and the world. Playing devil’s advocate, he
considers the possibility—which we have been defending—that
such mediation, which he calls “funneling,” may not be neces-
sary. “Perhaps an object being looked at is implicitly identified
by its ‘signature’ in the visual cortex—the collected responses
of simple, complex, and hypercomplex cells. Perhaps the brain
does not need any further recognizer for a particular form.”¢
He then rejects this view. His arguments, however, are not con-
vincing.

Hofstadter notes certain post-impressionist paintings require
several seconds of scrutiny before “suddenly a human figure
will jump out at you”4” and claims that this suggests time-consum-
ing unconscious symbol manipulation. We think that this may
well be true, but this contrived case does not show that normal
everyday associative recognition likewise requires the manipula-
tion of symbols. Indeed, ordinary everyday recognition is virtu-
ally instantaneous, which can be seen as supporting our
contention that recognition can be the direct result of brain
associations between what Hofstadter would call “signatures.”
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We normally enter everyday situations from a perspective
based on recent events, so that certain aspects of the current
situation stand out as significant. We believe that such under-
standing is produced directly by brain signatures without any
mediating symbol level. As the situation changes, its significant
aspects change and the new situation calls up the signature of
a similar situation from the past which directly triggers an appro-
priate action. The simplest case is when everything is changing
continuously, as when driving down a highway. In more difficult
but still normal cases, as in entering a room, our expectations
based on experience with previous rooms triggers a brain state
causing significant aspects like people and furniture to stand
out. And if we turn our attention to a figure, an association using
only brain states roughly corresponding to light intensities from
that figure, such as that used in the Finnish procedure for face
recognition, allows us to see that it is, let’s say, grandmother.
While not virtually instantaneous, this multistep process carried
on at the brain rather than symbol level takes but a moment.
Realistic pictures in a museum take a bit longer to recognize
because while we expect to see familiar objects like landscapes,
animals, people and furnished rooms, our brain presumably
needs to try several associations before it gets one integrating
the whole scene. Only in extreme, contrived cases, such as puz-
zles and the sort of paintings described by Hofstadter, do our
brains have to start from scratch like waking up in a strange
place. Then, we speculate, a great many different sets of aspects
of the situation must each be seen as salient before an appropri-
ate association is triggered at the brain level. Or, if Hofstadter
is right, as he may be in such contrived cases, we use this time
to manipulate symbols to figure things out. In these difficult
cases, merely noting that processing takes time does not tell
us what is going on. We wonder, however, how Hofstadter would
explain the virtually instantaneous everyday cases in terms of
his time-consuming strange loops and tangled hierarchies.

According to Hofstadter, “[a]nother difficulty with a non-fun-
neling theory is to explain how there can be different interpreta-
tions for a single signature”s; for example, an Escher picture
or a line drawing of a cube. But if one believes, as we do, that
the brain stores differently the same scene as seen from different
perspectives, that is, with different aspects salient, this phenome-
non is just what one would expect. In the normal course of
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events we enter a situation from a particular perspective and
we therefore see it in the way that is consistent with our ongoing
perspective. If we enter from another perspective things may
look rather different. Should we come across the situation in
isolation as in looking at a picture, then we would have to try
focusing on various different sets of aspects as salient. Each might
then call up a different associated memory and cause the situa-
tion to show up in a different way.

Even Minsky, one of the founders of conventional Al, no
longer thinks human beings store past experience in ““a language
at all—that is, an ordered string of symbols.” He now suggests
that the brain performs “pattern-matching on the current state
of the process.”#® In a recent paper that speculates on a much
more distributed and networklike model of thought than now
in vogue in Al, Minsky remarks:

[Wlhat if feelings and viewpoints are the simpler things? If such
dispositions are the elements of which the others are composed,
then we must deal with them directly. So we shall view memories
as entities that predispose the mind to deal with new situations
in old, remembered ways—specifically, as entities that reset the
states of parts of the nervous system.5°

According to Minsky, what is stored when some strategy
works and new knowledge is acquired is not facts and heuristic
rules but an efficiently organized library of special cases.

[Wle spoke . . . of creating an entirely new K-node for each memo-
rable event. But surely there are more gentle ways to “accumulate”
new subordinates to already existing nodes. Suppose that a chimpan-
zee achieves the too-high banana by using different means at differ-
ent times—first using a box, then a chair, later a table. One could
remember these separately. But, if they were all “accumulated”
to one single K-node, this would lead to creation of a more powerful
“how to reach higher” node: when reactivated, it would concur-
rently activate P-agents for boxes, chairs, or tables, so that percep-
tion of any of them will be considered relevant to the “reach
higher” goal. In this crude way, such an “accumulating” K-node
will acauire the effect of a class abstraction . . . “something to stand
on.”51

Thus Minsky appears to have abandoned the cognitivist model
of higher processes.
Other researchers have given up the information processing
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model at the lowest level of interaction between people and
the world. M.I.T.’s David Marr did excellent work on vision,
working out algorithms that calculate boundaries, depth, texture,
and the like without abstracting features of objects at all. The
first stages of sensory processing, as simulated by Marr, do not
use symbolic descriptions. Nonetheless, he remained true to the
assumptions of Al in holding that the job of the senses is to
produce “symbolic descriptions” for the higher processors. The
fact remains Marr gave no arguments for this claim, and his
important work is all at the presymbolic level.52

NEWELL AND SIMON’S initially attractive idea of using heuristic
rules to manipulate symbols representing objective features of
the real world has been in trouble for the past twenty years.
If we put together the idea that the senses or peripheral pro-
cessors are not using features and heuristic rules at the lowest
level with the idea that the highest or most central processing
in the brain matches patterns of whole situations rather than
using features and heuristic rules, we can see that the informa-
tion processing model is gradually being squeezed out by the
Al researchers themselves.

Thanks to Al research, Plato’s and Kant’s speculation that
the mind works according to rules has finally found its empirical
test in the attempt to use logic machines to produce humanlike
understanding. And, after two thousand years of refinement,
the traditional view of mind has shown itself to be inadequate.
Indeed, conventional Al as information processing looks like a
perfect example of what Imre Lakatos would call a degenerating
research program.5® It began auspiciously enough with Newell
and Simon’s early work showing that computers could be pro-
grammed to simulate certain forms of human symbolic manipu-
lations. And with the successes of the early 1970s it rapidly
established itself as a flourishing research program. Then, rather
suddenly, Al ran into unexpected difficulties from which it has
yet to recover.

The trouble started, as we have seen, with the failure of at-
tempts to program children’s story understanding, and it soon
became obvious that common sense was a serious and pervasive
problem. Related problems were also noted, although not often
seen as related. Cognitivists discovered the importance of images
and prototypes in human understanding, and logic machines
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turned out to be very poor at dealing with images and with
seeing the similarity of a given case to a prototypical one.5¢
Learning also turned out to be much harder than anyone had
expected.

As we see it, all these problems are versions of one basic
problem. Current Al is based on the idea, prominent in philoso-
phy since Descartes, that all understanding consists in forming
and using appropriate representations. Given the nature of infer-
ence engines, Al's representations must be formal ones, and
so commonsense understanding must be understood as some
vast body of precise propositions, beliefs, rules, facts, and proce-
dures. Thus formulated, the problem has so far resisted solution.
We predict it will continue to do so.

What hides the impasse is the conviction that the common-
sense knowledge problem must be solvable, since human beings
have obviously solved it. But human beings may not normally
use commonsense knowledge at all. What commonsense under-
standing amounts to might well be everyday know-how. If that
is indeed the case, we can understand both the initial success
and the eventual failure of AI. While its techniques will work
to some extent in isolated domains, they will fail in such areas
as natural-language understanding, speech recognition, story un-
derstanding, and learning, whose structure mirrors the structure
of our everyday physical and social world.

Like alchemy and behaviorism in their time, Al projects an
image of good health in spite of its difficulties. However, its
feverish activity and strident claims, and the tendency of its
practitioners to abandon theory and exploit current techniques,
may well be signs of its crisis. There are symposia, proceedings,
press releases, and start-up companies galore, and recently some-
thing the alchemists and behaviorists never achieved: lots of
military money. But there are also signs of trouble. Recently,
for example, Roger Schank lamented that “Al would have a
fairly difficult time justifying itself as a scientific discipline.”55
Schank points out that researchers do not know what constitutes
a Ph.D. topic or an acceptable paper in Al, because there is
no agreement on what the issues are. He argues, like Lenat,
that learning is the central issue, since one cannot claim any
intelligence at all for programs that remain unaffected by their
successes and failures. Yet general learning programs are not
‘even on the Al horizon.
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Even if the degeneration of theoretical AI makes it seem
increasingly likely that the information processing model of the
mind is a dead end, the Al community, like the alchemists, has
developed techniques that are useful as practical tools. Already
at the time of micro-world optimism, a split was forming in Al
ranks that would lead some researchers out of the Al impasse.
Newell and Simon’s early collection of protocols from people
actually solving problems, together with the relative success of
Al in micro-worlds completely cut off from human life, provided
Edward Feigenbaum with an opportunity for systems of a new
sort. Those new systems would use the rules of thumb by which
experts allegedly negotiate their areas of skill, plus large collec-
tions of facts about the real world; each would be designed to
capture human expertise within a specific isolated domain.

The restricted theoretical interest of work in restricted do-
mains is becoming apparent. At the same time hope for the
practical use of symbol manipulation systems is turning from
Al proper, with its commonsense knowledge problem produced
by trying to represent our commonsense know-how, and with
its frame problem produced by trying to represent temporal
skills, to the promise of expert systems for domains cut off from
common sense and from change. It is this turn to expert systems
engineering that gives the field a new lease on life, for, with
the decision to avoid the problems of commonsense understand-
ing and temporal change that arrested Al, practical success
seems within reach. Following the entrepreneurs, we shall now
turn from the difficulties of AI and Cognitive Science to the
booming field of knowledge engineering.



CHAPTER 4

EXPERT SYSTEMS VERSUS
INTUITIVE EXPERTISE

Expert systems are computer programs performing at the level of
human experts in various professional fields.

Edward Feigenbaum
The Fifth Generation (1983)

The words “expert system” are loaded with a great deal more implied
intelligence than is warranted by their actual level of sophistication.

Roger Schank
The Cognitive Computer (1984)

ALMOST NO COLLEGE teaches it, but a new kind of engineering
has burst on the American scene. Many people believe it may ulti-
mately exert as profound an influence on the workplace as factory
automation did decades ago.

It is called “knowledge engineering,” and its task is to interview
leading experts in science, medicine, business and other endeavors
to find out how they make judgments that are the core of their
expertise. The next step is to codify that knowledge so computers
can make similar decisions by emulating human inferential reason-
ing.
The knowledge engineer does this by reducing the expert’s wis-
dom to a series of interconnected generalized rules called the
“knowledge base.” A separate computer program called an “infer-
ential engine” is then used to search the knowledge base and draw
judgments when confronted with evidence from a particular case,
much the way an expert applies past knowledge to a new problem.

While knowledge engineering is still a primitive art, it has al-
ready been used with some success in prospecting for minerals,
diagnosing disease, analyzing chemicals, selecting antibiotics and
configuring computers. These programs are called “expert systems.”

While industry has used computer scoring systems analytically
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to advise executives making decisions, designers of the new systems
hope eventually to duplicate judgments by human experts.

[M]any say the possibility of aggregating the knowledge and
insights of several experts in the same field opens the prospect of
computer-aided decisions based on more wisdom than any one per-
son can contain.!

Such reports can be read in almost any newspaper these days.
The above report made the front page of the usually trustworthy
New York Times.

In What Computers Can’t Do, written in 1969, the main ob-
jection to Al was the impossibility of using rules to select only
those facts about the real world that were relevant in a given
situation. The “Introduction” to the paperback edition of the
book, published by Harper & Row in 1979, pointed out further
that no one had the slightest idea how to represent the common-
sense understanding possessed even by a four-year-old. Since
those were our basic reservations, we noted that in areas more
or less cut off from the rest of human life, such as games, micro-
worlds, and highly technical domains, good work had been done,
and we implied that there was no limit to what one could expect
in such isolated areas. We thought that a checkers champion
had already been programmed; we were impressed with the
performance of SHRDLU in the blocks world; and we admired
the ability of an expert system named DENDRAL. In spite of
some doubts as to whether chess masters use rules and make
inferences, we came out solidly on the side of knowledge engi-
neering as opposed to theoretical AI and expressed (on page
27) what was for us an uncharacteristic optimism:

As long as the domain in question can be treated as a game, i.e.,
as long as what is relevant is fixed, and the possibly relevant factors
can be defined in terms of context-free primitives, then computers

can do well. . . . And they will do progressively better relative to
people as the amount of domain-specific knowledge required is
increased.

Now we think we were wrong, and our doubts about whether
chess masters use inference rules have developed into our five-
stage model of skill acquisition, which suggests that it is highly
unlikely that expert systems will ever be able to deliver expert
performance. (Actually, we’d prefer to call them “competent
systems,” since we can find no evidence that they will ever
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surpass the third stage of our skill model.) Much of the current
wave of optimism concerning expert systems has been generated
by Edward Feigenbaum and Pamela McCorduck’s book The
Fifth Generation,? so we can best show the relevance of our
account of skill acquisition to the hopes of expert system builders
by taking a critical look at Feigenbaum’s facts, arguments, and
assumptions.

Expert Systems and Calculative Rationality

Expert systems have been the subject of recent cover stories
in Business Week and Newsweek as well as the New York Times
article with which we began this chapter.? The heightened inter-
est in machine intelligence is attributable not to any new theo-
retical accomplishment but rather to a much publicized
competition with Japan to build a new generation of computers
with built-in expertise. That is the so-called fifth generation. (The
first four generations were based, in turn, on vacuum tubes,
transistors, integrated circuits, and LSI or “large-scale” inte-
grated circuits.) According to Newsweek lead heading: “Japan
and the United States are rushing to produce a new generation
of machines that can very nearly think.” Feigenbaum, professor
of computer science at Stanford University and one of the origi-
nal developers of expert systems, spells out the goal:

In the kind of intelligent system envisioned by the designers of
the Fifth Generation, speed and processing power will be increased
dramatically; but more important, the machines will have reasoning
power: they will automatically engineer vast amounts of knowledge
to serve whatever purpose human beings propose, from medical
diagnosis to product design, from management decisions to
education.*

The knowledge engineers claim to have discovered that in
areas cut off from everyday common sense and social intercourse,
all a machine needs in order to behave like an expert are some
general rules and lots of very specific knowledge. As Feigenbaum
puts it:

The first group of artificial intelligence researchers . . . was per-
suaded that certain great, underlying principles characterized all
intelligent behavior. . . .

In part, they were correct. [Such strategies] include searching
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for a solution (and using “rules of good guessing” to cut down the
search space); generating and testing (does this work? no; try some-
thing else); reasoning backward from a desired goal; and the like.

These strategies are necessary, but not sufficient, for intelligent
behavior. The other ingredient is knowledge—specialized knowl-
edge, and lots of it. . . . No matter how natively bright you are,
you cannot be a credible medical diagnostician without a great
deal of specific knowledge about diseases, their manifestations, and
the human body.5

That specialized knowledge is of two types:

The first type is the facts of the domain—the widely shared knowl-
edge . . . that is written in textbooks and journals of the field. . . .
Equally important to the practice of the field is the second type
of knowledge called heuristic knowledge, which is the knowledge
of good practice and good judgment in a field. It is experiential
knowledge, the “art of good guessing” that a human expert acquires
over years of work.8

Using all three kinds of knowledge, Feigenbaum developed
a program called DENDRAL, an alleged expert in the isolated
domain of spectrograph analysis. From the data generated by
a mass spectrograph it can deduce the molecular structure of
a compound being analyzed. Another program, MYCIN, takes
the results of blood tests, such as the number of red cells and
white cells, sugar in the blood, and other measurements, and
comes up with a proposed diagnosis of which blood disease is
responsible for the patient’s condition. It even gives an estimate
of the reliability of its own diagnosis. In their narrow areas, such
programs perform with impressive competence.

And isn’t that success just what one would expect? If we
agree with Feigenbaum that “almost all the thinking that profes-
sionals do is done by reasoning,”” we can see that once computers
are used for reasoning and not just computation they should
be as good as or better than we are at following rules for deducing
conclusions from a host of facts. So we would expect that if
the rules an expert has acquired from years of experience could
be extracted and programmed, the resulting program would
exhibit expertise. Again Feigenbaum puts the point very clearly:

[T]he matters that set experts apart from beginners are symbolic,
inferential, and rooted in experiential knowledge. Human experts
have acquired their expertise not only from explicit knowledge
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found in textbooks and lectures, but also from experience: by doing
things again and again, failing, succeeding . . . getting a feel for
a problem, learning when to go by the book and when to break
the rules. They therefore build up a repertory of working rules
of thumb, or “heuristics,” that, combined with book knowledge,
make them expert practitioners.®

Since each expert already has a repertory of rules in his mind,
all the expert system builder need do is extract them and pro-
gram them into a computer.

That view is not new. In fact, it goes back to the beginning
of Western culture, when the first philosopher, Socrates,
searched Athens for experts who could articulate their rules so
he could test them. In one of his earliest dialogues, The Eu-
thyphro, Plato tells us of an encounter between Socrates and
Euthyphro, a religious prophet and so an accepted expert on
pious behavior. Socrates asks Euthyphro to tell him how to recog-
nize piety: “I want to know what is characteristic of piety . . .
to use as a standard whereby to judge your actions and those
of other men.” But instead of revealing his piety-recognizing
heuristic, Euthyphro does just what every expert does when
cornered by a Socrates: He gives him examples from his field
of expertise. Euthyphro cites situations in the past in which men
and gods had done things everyone considered pious. Through-
out the dialogue Socrates persists in interrogating Euthyphro
about his rules, but although Euthyphro claims he knows how
to tell pious acts from impious ones, he cannot state the rules
that generate his judgments. Socrates encountered the same
problem with craftsmen, poets, and even statesmen. None could
articulate the principles on which he acted. Socrates concluded
that no one knew anything—including Socrates, who at least
knew his own ignorance.

That was an intolerable conclusion, so Plato, who admired
Socrates and sympathized with his problem, developed an ac-
count of what caused the difficulty. Experts had once known
the rules they use, Plato said, but then they had forgotten them.
The role of the philosopher was to help people remember the
principles on which they act.

In the Platonic view the rules are there functioning in the
expert’s mind whether he is conscious of them or not. How
else could we account for the fact that he can perform the task?
Knowledge engineers would now say that the rules the experts
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use have been put in a part of their mental computers, where
they work automatically: “When we learned how to tie our shoes,
we had to think very hard about the steps involved. . . . Now
that we’ve tied many shoes over our lifetime, that knowledge
is ‘compiled,” to use the computing term for it; it no longer
needs our conscious attention.”?

Now, two thousand years later, thanks to Feigenbaum and
his colleagues, we have a new name for what Socrates and Plato
were doing—“we are able to be more precise . . . and with
this increased precision has come a new term, knowledge acqui-
sition research.”'® But although philosophers and even the man
in the street have become convinced that expertise consists in
applying sophisticated heuristics to masses of facts, there are
few available rules. As Feigenbaum explains, “an expert’s knowl-
edge is often ill-specified or incomplete because the expert him-
self doesn’t always know exactly what it is he knows about his
domain.”*! So the knowledge engineer has to help him recollect
what he once knew:

[An expert’s] knowledge is currently acquired in a very painstaking
way; individual computer scientists work with individual experts
to explicate the expert’s heuristics—to mine those jewels of knowl-
edge out of their heads one by one . . . the problem of knowledge
acquisition is the critical bottleneck in artificial intelligence.!?

When Feigenbaum suggests to an expert the rules the expert
seems to be using, he gets a Euthyphro-like response: “That’s
true, but if you see enough patients/rocks/chip designs/instru-
ments readings, you see that it isn’t true after all.”13 Feigenbaum
comments with Socratic annoyance: “At this point, knowledge
threatens to become ten thousand special cases.”14

A History of Inflated Claims

There are also other hints of trouble. Ever since the inception
of Al researchers have been trying to produce artificial experts
by programming the computer to follow the rules used by mas-
ters in various domains. Yet, although computers are faster and
more accurate than people in applying rules, master-level perfor-
mance has remained out of reach. Arthur Samuel’s work is typi-
cal. In 1947, when electronic computers were just being
developed, Samuel, then at IBM, decided to write a checkers
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program. He did not try to make a machine play checkers by
brute-force calculation of all chains of moves clear to the end.
He calculated that if you tried to look to the end of the game
with the fastest computer you could possibly build, subject to
the speed of light, it would take 10 followed by twenty-one
zeros centuries to make the first move. So he tried to elicit heuris-
tic rules from checkers masters and program a computer to fol-
low those rules. When the rules the experts came up with did
not produce master play, Samuel became the first and almost
the only Al researcher to make a learning program. He pro-
grammed a computer to vary the weights used in the rules,
such as the tradeoff between center control and loss of a piece,
and to retain the weights that worked best. After playing a great
many games with itself, the program could beat Samuel, which
shows that in some sense computers can do more than they
are programmed to do.

The checkers program is not only the first and one of the
best experts ever built, but it is also a perfect example of the
way fact turns into fiction in AI. The checkers program once
beat a state checkers champion. From then on Al literature
has cited the checkers program as a noteworthy success. One
often reads that it plays at such a high level that only the world
champion can beat it. Feigenbaum, for example, reports that
“by 1961 [Samuel’s program] played championship checkers,
and it learned and improved with each game.”5 Even the usually
reliable Handbook of Artificial Intelligence states as a fact that
“today’s programs play championship-level checkers.”¢ In fact,
Samuel said in a recent interview at Stanford University, where
he is a retired professor, the program did once defeat a state
champion, but the champion “turned around and defeated the
program in six mail games.” According to Samuel, after thirty-
five years of effort, “the program is quite capable of beating
any amateur player and can give better players a good contest.”
It is clearly no champion. Samuel is still bringing in expert play-
ers for help, but he fears he “may be reaching the point of
diminishing returns.” That does not lead him to question the
view that the masters the program cannot beat are using heuris-
tic rules; rather, like Socrates and Feigenbaum, Samuel thinks
the experts are poor at recollecting their compiled heuristics:
“The experts do not know enough about the mental processes
involved in playing the game.”!?

The same story is repeated in every area of expertise, even
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in areas where unlike checkers expertise requires the storage
of large numbers of facts, which should give an advantage to
the computer. In each area where there are experts with years
of experience the computer can do better than the beginner,
and can even exhibit useful competence, but it cannot rival the
very experts whose facts and supposed heuristics it is processing
with incredible speed and unerring accuracy.

In the face of that impasse it was necessary, in spite of the
authority and influence of Plato and two thousand years of philos-
ophy, for us to take a fresh look at what a skill is and what
the expert acquires when he attains expertise. As shown earlier,
one has to abandon the traditional view that a beginner starts
with specific cases and, as he becomes more proficient, abstracts
and interiorizes more and more sophisticated rules. It turned
out that skill acquisition moves in just the opposite direction—
from abstract rules to particular cases. It seems that a beginner
makes inferences using rules and facts just like a heuristically
programmed computer, but with talent and a great deal of in-
volved experience the beginner develops into an expert who
intuitively sees what to do without applying rules. Of course,
a description of skilled behavior can never be taken as conclusive
evidence as to what is going on in the mind or in the brain. It
is always possible that what is going on is some unconscious
process using more and more sophisticated rules. But our de-
scription of skill acquisition counters the traditional prejudice
that expertise necessarily involves inference.

Given our account of the five stages of skill acquisition, we
can understand why the knowledge engineers from Socrates
to Samuel to Feigenbaum have had such trouble getting the
expert to articulate the rules he is using. The expert is simply
not following any rules! He is doing just what Feigenbaum feared
he might be doing: recognizing thousands of special cases. That
in turn explains why expert systems are never as good as experts.
If one asks the experts for rules one will, in effect, force the
expert to regress to the level of a beginner and state the rules
he still remembers but no longer uses. If one programs them
on a computer, one can use the speed and accuracy of the com-
puter and its ability to store and access millions of facts to outdo
a human beginner using the same rules. But no amount of rules
and facts can capture the knowledge an expert has when he
has stored his experience of the actual outcomes of tens of thou-
sands of situations.
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The knowledge engineer might still say that in spite of appear-
ances the mind and brain must be reasoning—making millions
of rapid and accurate inferences like a computer. After all, the
brain is not “wonder tissue,” and how else could it work? But
as we have seen, there are other models for what might be
going on in the hardware. When asked in an interview whether
holograms would allow a person to make decisions spontaneously
in very complex environments, Karl Pribram, a Stanford neuro-
psychologist, replied: “Decisions fall out as the holographic cor-
relations are performed. One doesn’t have to think things
through . . . a step at a time. One takes the whole constellation
of a situation, correlates it, and out of that correlation emerges
the correct response.”8

We can now understand why, in a recent article in Science,
two expert systems builders, Richard Duda and Edward Short-
liffe, who assume rather cautiously but without evidence that
“experts seem to employ rule-like associations to solve routine
problems quickly,”?? are nonetheless finally forced by the phe-
nomenon to conclude: '

The identification and encoding of knowledge is one of the most
complex and arduous tasks encountered in the construction of an
expert system. . . . Even when an adequate knowledge representa-
tion formalism has been developed, experts often have difficulty
expressing their knowledge in that form.2

Likewise, we should not be surprised that in the area of medicine
we find doctors concluding:

The optimistic expectation of 20 years ago that computer technol-
ogy would also come to play an important part in clinical decisions
has not been realized, and there are few if any situations in which
computers are being routinely used to assist in either medical diag-
nosis or the choice of therapy.?!

We predict that in any domain in which people exhibit ho-
listic understanding, no system based upon heuristics will
consistently do as well as experienced experts, even if those ex-
perts were the informants who provided the heuristic rules. Ac-
cording to the media, however, many systems already
outperform experts and so falsify our prediction. We shall there-
fore now deal with each alleged exception in turn.
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The Exceptions That Prove the Rule

The first supposed exception is a system, called MACSYMA, de-
veloped at M.I.T., for doing certain manipulations required in
algebra and calculus. MACSYMA began as a heuristic system.
It has evolved, however, into an algorithmic system, using proce-
dures guaranteed to work but involving so much calculation
people would normally not use them. Perhaps that is why
MACSYMA is not on Feigenbaum’s list of expert systems in The
Fifth Generation. So the fact that MACSYMA, as far as we know,
now outperforms all experts in its field does not constitute an
exception to our prediction.

DENDRAL was one of the first and most touted expert sys-
tems, which, according to Feigenbaum, “began AI’s shift to
the knowledge-based viewpoint.” It has a history similar to
MACSYMA'’s. Feigenbaum, stockholder in and director of an
expert systems company, however, gives the impression that
DENDRAL is still based on heuristic rules gleaned from experts
and that it is widely used in industry. He says that “DENDRAL
has been in use for many years at university and industrial chemi-
cal labs around the world.”22

When we called several universities and industrial sites that
do mass spectroscopy, we were surprised to find that none of
them use DENDRAL. The resolution of this apparent contradic-
tion turned out to be revealing. DENDRAL was the name of
the original research project, which developed several quite dif-
ferent programs. One of those, Heuristic DENDRAL, uses heu-
ristic rules operating on the spectrum produced by a mass
spectrometer to infer various molecular structures that might
produce the observed spectrum. It then tests to see how well
the spectra of the candidate structures match the actual mass
spectra observed, and ranks the candidates based on this match-
ing. Heuristic DENDRAL is, indeed, an expert system, but it
is not commercially available. David Smith, director of engineer-
ing at Finnigan Corporation in San Jose, California, the world’s
largest manufacturer of mass spectrography equipment, ex-
plained: “There are no commercial companies that produce
mass-spectrometers that have DENDRAL available in their data
systems. It does not run on any of the current popular operating
systems that are used with a mass spectrometer. It was coded
ten years ago or longer, and it just has not been maintained,
either by Stanford or by any commercial interest.”
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An outgrowth of the DENDRAL project, CONGEN, does
seem to be in use daily by chemists, but it is not a heuristic-
based expert system. CONGEN uses an algorithmic procedure
to generate all molecular structures consistent with information
based on several sources, including spectroscopy. The program
does not heuristically infer constraints from mass spectra, as does
Heuristic DENDRAL, but directly accepts constraints provided
by human experts.23

We asked Bruce Buchanan, a co-developer of DENDRAL,
whether the heuristic part of DENDRAL was an expert system
that could outperform intuitive experts, and, if so, why it wasn’t
used in industry. He explained that (1) the system as pro-
grammed contained knowledge of only one very specific class
of compounds, and for such compounds it outperformed the
best chemists, (2) it was not commercially available because ap-
parently the investment required in order to codify the knowl-
edge of the many specific domains that concern industry was
prohibitive, and (3) spectroscopy had been chosen as a test bed
for expert systems in the first place because chemists doing mass
spectral interpretation must rely largely on systematic inference
rather than intuitive pattern recognition. Since in spectro-
graphic analysis skilled performance requires calculation, the
success of heuristic DENDRAL does not falsify our hypothesis.

R1, another expert system both as good as human specialists
and heuristic, was developed at Digital Equipment Corporation
to decide how to combine components of VAX computers to
meet customers’ needs. Like DENDRAL it performs as well
as anyone in the field only because the domain in question is
so combinatorial that even experienced specialists fail to develop
holistic understanding. The experienced “technical editors” who
perform the job at DEC depend on heuristic-based problem-
solving and take about ten minutes to work out even simple
cases, so it is no surprise that an expert system can rival the
best specialists.

Chess seems an obvious exception to our prediction, since
chess programs have already achieved master ratings. The chess
story is complicated and fascinating.

Chess programs have come a long way since Stuart first played
against one in 1958. He recalls:

I knew that the program I was playing was experimental and that
game programming was in its infancy, but I was not prepared for
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what happened. To play the computer in those days you entered
your move into the computer at a keyboard and its move was shown
by printing out a picture of the new position. About five moves
into the game, I was surprised to discover on the machine’s picture
that it had given me an extra castle, which was sitting out in the
middle of the board. I didn’t feel it ethical to use the phantom
castle, so went about my business attacking the computer’s king
while it proceeded to sneak up on the extra piece it had given
me. By the time the program had captured the castle, I had an
unstoppable attack on its king. But, just as I was about to mate
the machine, it printed out its picture of the position and, lo and
behold, it had now given itself an extra castle, which prevented
my mate. The game was never finished, but no doubt the bug
was removed from the program, since it soon played legal, although
poor, chess.

Speaking of the poor quality of early chess programs, it is
time to lay to rest a silly story about Hubert that has reappeared
in numerous books and articles?* since it was first reported in
Alvin Toffler’s book Future Shock in 1971. Toffler inaccurately
interpreted Hubert as predicting in 1965 that computers would
never play even amateur chess. He then accurately reported
that Hubert, who is at best an amateur chess player, was beaten
at M.I.T. in 1968 by a chess program named Mac Hack. If you
read the full quotation, it is clear that Toffler’s interpretation
is a distortion. Hubert’s assertion was simply a correct report
of the state of the art at that time and contained no prediction:
“According to Newell, Shaw and Simon themselves, evaluating
the Los Alamos, the IBM, and the NSS programs: ‘All three
programs play roughly the same quality of chess (mediocre).’
Still no chess program can play even amateur chess.”?5

Programs that play chess are among the earliest examples
of expert systems. The first such program was written in the
1950s, and by the late 1960s fairly sophisticated programs had
been developed. Master players, as they check out each plausible
move that springs to mind, generally consider one to three plau-
sible opponent responses, followed by one to three moves of
their own, and so on. Quite frequently only one move looks
plausible at each step. After looking ahead a varying number
of moves depending on the situation, the terminal position of
each sequence is assessed based on its similarity to positions
previously encountered. In positions where the best initial move
is not obvious, about one hundred terminal positions will typi-
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cally be examined. Such thinking ahead generally confirms that
the initial move intuitively seen as the most plausible is indeed
best, although there are occasional exceptions. To imitate human
players, the program designers attempted to elicit from the mas-
ters heuristic rules that could be used to generate a limited
number of plausible moves at each step and evaluation rules
that could be used to assess the worth of the roughly one hundred
terminal positions. Since masters are not aware of following any
rules, the rules that they suggested did not work well, and the
programs played at a marginally competent level.

As computers grew faster in the 1970s, chess programming
strategy changed. In 1973 a program was developed at North-
western University by David Slate and Larry Atkin which in
effect rapidly searched every legal initial move and every legal
response to a depth determined by the position and the comput-
er’s speed, generally about three moves for each player. A clever
procedure in the program actually eliminated certain sequences
of moves that could not possibly be best without examining them,
thereby greatly speeding up the search. Although the roughly
1 million terminal positions in the look-ahead were still evaluated
by rules, plausible-move-generation heuristics were discarded.
The resulting program looked less like an expert system, and
quality of play greatly improved. By 1983, using those largely
brute-force procedures and the latest, most powerful computer
(the Cray X-MP, capable of examining about 10 million terminal
positions in choosing each move), a program called Cray-Blitz
became world computer chess champion and achieved a master
rating based on a tournament against other computers that al-
ready had chess ratings.

Such programs, however, have an Achilles’ heel. While they
are perfect tacticians when there are many captures and checks
and a decisive outcome can be found within the computer’s
foreseeable future (now about four moves ahead for each player),
computers lack any sense of chess strategy. Fairly good players
who understand that fact can direct the game into long-range
strategic channels, thereby defeating the computer, even though
those players have a somewhat lower chess rating than the ma-
chine has achieved based on play against other machines and
human beings who do not recognize the strategic blindness.
The ratings held by computers and reported in the press accu-
rately reflect their performance against other computers and
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human players who do not exploit the computer’s weakness,
but greatly overstate their skill level in strategic play.

A Scottish International Master chess player, David Levy, is
a computer enthusiast and chairman of a company called Intelli-
gent Software in London. Levy, ranked as roughly the thou-
sandth best player in the world, bet about $4,000 in 1968 that
no computer could defeat him by 1978. He collected, by beating
the best computer program at that time 3.5 games to 1.5 games
in a five-game match. He was, however, impressed by the ma-
chine’s performance, and the bet was increased and extended
until 1984, with Levy quite uncertain about the outcome. When
the 1984 match approached and the Cray-Blitz program had
just achieved a master-level score in winning the world com-
puter championship, Levy decided to modify his usual style of
play to exploit to a maximum the computer’s strategic blindness.
Not only did he defeat the computer decisively, four games to
zero, but more important, he lost his long-held optimism about
computer play. As he confessed to the Los Angeles Times:

During the last few years I had come to believe more and more
that it was possible for programs, within a decade, to play very
strong grandmaster chess. But having played the thing now, my
feeling is that a human world chess champion losing to a computer
program in a serious match is a lot further away than I thought.
Most people working on computer chess are working on the wrong
lines. If more chess programmers studied the way human chess
masters think and tried to emulate that to some extent, then I
think they might get further.

Levy summed up his recent match by saying: “The nature of
the struggle was such that the program didn’t understand what
was going on.”?6 Clearly, when confronting a player who knows
its weakness, Cray-Blitz is not a master-level chess player.

We could not agree more strongly with Levy’s suggestion
that researchers give up current methods and attempt to imitate
what people do. But strong chess players seem to use the holistic
similarity recognition described in the highest of our five levels
of skill, so that imitating them would mean duplicating that pat-
tern recognition process rather than returning to the typical
expert system approach: “The great chess player does not see
squares and pieces. . . . He internalizes a very special sense of
‘fields of force.’. . . What matters thus is not the particular
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square, nor even piece, but a cluster of potential actions, a space
of and for evolving events.”?? Since similarity for a strong chess
player means similar “fields of force” and since no one has yet
succeeded in describing such fields, there is little prospect of
duplicating human performance in the foreseeable future.

The only remaining game program that appears to challenge
our prediction is Hans Berliner’s backgammon program, BKG
9.8. There is no doubt that the program used heuristic rules
obtained from masters to beat the world champion in a seven-
game series. But backgammon is a game involving a large ele-
ment of chance, and Berliner himself is quite frank in saying
that his program “did get the better of the dice rolls” and could
.not consistently perform at championship level. He concludes:
“The program did not make the best play in eight out of 73
nonforced situations. . . . An expert would not have made most
of the errors the program made, but they could be exploited
only a small percent of the time. . . . My program plays at the
Class A, or advanced intermediate, level.”28

These cases are clearly not counter-examples to our claim.
Neither is a recent SRI contender named PROSPECTOR, a pro-
gram that uses rules derived from expert geologists to locate
mineral deposits. Millions of viewers heard about PROSPECTOR
on the “CBS Evening News” in September 1983. A special Dan
Rather report called “The Computers Are Coming” showed first
a computer and then a mountain (Mount Tolman) as Rather
authoritatively intoned: “This computer digested facts and fig-
ures on mineral deposits, then predicted that the metal molybde-
num would be found at this mountain in the Pacific Northwest.
It was.” Such a feat, if true, would indeed be impressive. A
brief interview with us was shown on the same program. Viewers
must have felt that we were foolish when we asserted that, using
current AI methods, computers would never become intelligent.
In reality, the PROSPECTOR program was given information
concerning prior drilling on Mount Tolman where a field of
molybdenum had already been found. The expert system then
mapped out undrilled portions of that field, and subsequent drill-
ing showed it to be basically correct about where molybdenum
did and did not exist.2? Unfortunately, economic-grade ore was
not found in the previously unmapped area; drilling disclosed
the ore to be too deep to be worth mining. One cannot conclude,
therefore, that the program can outperform experts. Up to now
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there are no further data comparing experts’ predictions with
those of the system.

Among other programs we know of that meet all the require-
ments for a test of our hypothesis are MYCIN, mentioned earlier;
INTERNIST-I, a program for diagnosis in internal medicine; and
PUFF, an expert system for diagnosis of lung disorders. They
are each based exclusively on heuristic rules extracted from ex-
perts, and their performance has been compared with that of
experts in the field.

A systematic evaluation of MYCIN was reported in the Jour-
nal of the American Medical Association. The program was sup-
plied with data concerning ten actual meningitis cases and asked
to prescribe drug therapy. Its prescriptions were evaluated by
a panel of eight infectious disease specialists who had published
clinical reports dealing with the management of the ailment.
The experts rated as acceptable 70 percent of MYCIN’s recom-
mended therapies.3°

The evidence concerning INTERNIST-I is even more de-
tailed. In fact, according to the New England Journal of
Medicine, which published an evaluation of the program, the
“systematic evaluation of the model’s performance is virtually
unique in the field of medical applications of artificial
intelligence.””3t INTERNIST-I is described as follows:

From its inception, INTERNIST-I has addressed the problem of
diagnosis within the broad context of general internal medicine.
Given a patient’s initial history, results of a physical examination,
or laboratory findings, INTERNIST-I was designed to aid the physi-
cian with the patient’s work-up in order to make multiple and com-
plex diagnoses. The capabilities of the system derive from its
extensive knowledge base and from heuristic computer programs
that can construct and resolve differential diagnoses.3?

The program was run on nineteen cases, each with several
diseases, so that there were forty-three correct diagnoses in all,
and its diagnoses were compared with those of clinicians at Mas-
sachusetts General Hospital and with case discussants. Diagnoses
were counted as correct when confirmed by pathologists.

The result: Of “43 anatomically verified diagnoses, INTER-
NIST-I failed to make a total of 18, whereas the clinicians failed
to make 15 such diagnoses and the discussants missed only
eight.”33 The evaluators found that the “experienced clinician
is vastly superior to INTERNIST-I in the ability to consider the
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relative severity and independence of the different manifesta-
tions of disease and to understand the temporal evolution of
the disease process.”’3 Dr. G. Octo Barnett, in his editorial com-
ment on the evaluation, wisely concluded:

Perhaps the most exciting experimental evaluation of INTERNIST-I
would be the demonstration that a productive collaboration is
possible between man and computer—that clinical diagnosis in real
situations can be improved by combining the medical judgment
of the clinician with the statistical and computational power of a
computer model and a large base of stored medical information.3®

The Proper Use of Competent Systems

We have found that in domains where a person can function
without calling upon the full range of his natural language under-
standing, common sense, know-how, and ability to adjust to un-
anticipated changes, expert systems can competently perform
tasks that would normally be described as requiring judgment
and wisdom. But rather than improving on human performance,
we have seen in detail that the computer falls short of expert-
level human skill.

In areas where competence is sufficient or where their limita-
tions are well understood, expert systems can be appropriate.
Consider medicine, where expert systems development has been
extensive enough to prompt speculation on its social conse-
quences. For several reasons PUFF, which diagnoses lung disor-
ders, is an instructive example. PUFF uses thirty heuristic rules
given to it by Dr. Robert Fallat, the chief of pulmonary medicine
at the Pacific Medical Center in San Francisco, yet it agrees
with him only 75 percent of the time. Why it cannot do better
is a mystery, if one believes, as Robert MacNeil put it on the
“MacNeil-Lehrer News Hour,” that researchers “discovered
that Dr. Fallat used some thirty rules based on his clinical exper-
tise to diagnose whether patients have obstructive airway dis-
ease.” But the machine’s limited ability makes perfect sense if
Fallat does not in fact follow those thirty rules or any others.

Still the system is useful. As Dr. Fallat states: “There’s a lot
of what we do, including our thinking and our expertise, which
is routine, and which doesn’t require any special human effort
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to do. And that kind of stuff should be taken over by computers.
And to the extent that 75 percent of what I do is routine and
which all of us would agree on, why not let the computer do
it and then I can have fun working on the other 25 percent.”’3

Yet Dr. Fallat’s apparently simple suggestion may be compli-
cated in practice. Just for starters, will the machine screen the
cases, bumping the difficult ones to human experts, or vice versa?
In the case of PUFF the answer is straightforward. Fallat is able
quickly to review PUFF’s output and tell with close to 100 per-
cent accuracy whether or not it is acceptable, because the data
on which PUFF bases its diagnosis are entirely quantitative and
can be displayed graphically for Fallat to “take a gestalt on.”’37
PUFF screens all the cases and generates reports on them. Fallat
reviews the reports, and if he agrees with PUFF, his paperwork
is already done, for the reports are detailed enough to be sent
to the doctors for whom he is consulting.

Dr. Fallat’s interpretive skills approach 100 percent accuracy,
so he can correct PUFF in those 25 percent of cases where
PUFF is inadequate to the task. His expertise is what allows
him to use PUFF effectively, to save on the labor of paperwork,
and to help train students. All in all, Fallat’s relationship with
PUFF seems a healthy one in which the machine is being used
as an aid to, and not a substitute for, the human mind. Unfortu-
nately, most branches of medicine are not so tidy. Few offer
so convenient a method of riding herd on mechanical diagnostic
assistants as the graph, which Fallat can interpret at a glance.
Without a simple way of checking the decisions of the machine,
the human expert will have to do as much work as before or
else hand over real decision-making to the machine.

Dubious as we are about the benefits of expert systems, we
empbhatically do believe that sophisticated computation has its
place in medicine. To begin with, there are “diagnostic prompt-
ing systems” like RECONSIDER, which we discussed in our
Preface. These systems work by encouraging the doctor to con-
sider alternatives and not jump to conclusions. And there are
the new scanning technologies, from computer-enhanced x-ray
imaging to CAT scanning to nuclear-magnetic resonance, all
based on computerized data processing. Here we would only
warn against attempts to automate the interpretation of the
scan data, replacing virtuoso human beings with merely compe-
tent computer programs.

Feigenbaum himself admits in one surprisingly frank passage
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that expert systems are very different from experts: “Part of
learning to be an expert is to understand not merely the letter
of the rule but its spirit. [The expert] knows when to break
the rules, he understands what is relevant to his task and what
isn’t. . . . Expert systems do not yet understand these things.”38
But because of his philosophical commitment to the rationality
of expertise and thus to underlying unconscious heuristic rules,
Feigenbaum does not see how devastating his admission is.

Once one gives up the assumption that experts must be mak-
ing inferences and admits the role of involvement and intuition
in the acquisition and application of skills, one will have no reason
to cling to the heuristic program as a model of human intellectual
operations. Feigenbaum’s claim that “we have the opportunity
at this moment to do a new version of Diderot’s Encyclopedia,
a gathering up of all knowledge—not just the academic kind,
but the informal, experiential, heuristic kind,”3® as well as his
boast that Knowledge Information Processing Systems (KIPS)
will soon result in “machine intelligence—faster, deeper, better
than human intelligence,”*® can both be seen as a late stage of
Socratic thinking, with no rational or empirical basis. In that
light those who claim we must begin a crash program to compete
with the Japanese fifth-generation intelligent computers can be
seen to be false prophets blinded by Socratic assumptions and
personal ambition—while Euthyphro, the expert on piety, who
kept giving Socrates examples instead of rules, turns out to have
been a true prophet after all.

Where does that leave expert systems? Recall that knowledge
engineering looked like the way out of the impasse posed by
the problem of commonsense knowledge. But, as one might
suspect, since both the commonsense problem and the expertise
problem are just different manifestations of the general problem
that computers cannot capture skills by using rules and features,
knowledge engineering is finally forced to confront, on its own
turf, the unsolved problems of Al. Thus Richard Duda and John
Gaschnig end a generally optimistic article with the realization
that the knowledge acquisition problem is a version of the gen-
eral Al problem of knowledge representation:

The problem is that although inference networks of rules do much
to codify the reasoning process that an expert uses in solving a
problem, there’s still much that goes on inside an expert’s head
that doesn’t appear in the networks. . . . One of the problems is
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that it is difficult for experts to describe exactly how they do what
they do, especially with respect to their use of judgment, experi-
ence, and intuition.

This is often called the knowledge-acquisition problem. Despite
several concentrated efforts, it remains a bottleneck. Past efforts
to speed knowledge acquisition have been along three lines: (1)
to develop smart editors that assist in entering and modifying rules,
(2) to develop an intelligent interface that can interview the ex-
pert and formulate the rules, and (3) to develop a learning system
that can induce rules from examples, or by reading textbooks and
papers.

Somewhat ironically, to do anything ambitious along these lines
seems to require fundamental advances in our understanding of
two core Al topics—the representation of knowledge and the use
of knowledge!4!

But one can refrain from the overly ambitious and still accom-
plish something practical. Those who are most acutely aware
of the limitations of expert systems are best able to exploit their
real capabilities. Dr. Sandra Cook, manager of the Financial Ex-
pert Systems Program at SRI International, is one of those en-
lightened practitioners. She cautions prospective clients that
expert systems should not be expected to perform as well as
human experts, nor should they be seen as simulations of human
expert thinking. Cook lists eight reasonable conditions for suc-
cessful applications (meaning that fairly high-quality perfor-
mance can be made generally available within a company
employing few if any true experts):

1. No algorithmic solution to the problem should exist, so
that expertise is indeed required. (Recall that an algo-
rithmic solution procedure is one that is guaranteed to
find the demonstrably best solution to a problem.)

2. The problem can be satisfactorily solved by human experts
at such a high level that somewhat inferior performance
is still acceptable. (Stock market prediction, for example,
would be an inappropriate area because human experts
themselves perform erratically.)

3. There is a significant likelihood of a poor decision if made
by a nonexpert. (Processing business credit applications
is a reasonable area for expert system design, because inex-
perienced beginners have little ability to recognize non-
routine cases.)
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4. Poor decisions must have significant impacts. (Expert sys-
tems are expensive to create and maintain.)

5. The problem must remain relatively unchanged during
the time it takes a user of the system to solve the problem
interactively. (Any expert system advice concerning the
control of a nuclear reactor during a crisis would come
too late to be of use. Only human experts or self-contained
computer programs are fast enough to influence events.)

6. The knowledge domain must be relatively static. (Other-
wise the system would require expensive continuous up-
dating.)

7. A patient and cooperative expert must be available to the
project to answer hypothetical questions which at best re-
veal the reasoning process he or she may once have used
but has discarded since becoming an expert. This exercise
can be frustrating, especially if the conclusion generated
by the rules the expert articulates frequently fails to match
his intuitive responses.

8. The political climate of the business must be conducive
to the introduction of a new tool substituting certain user
skills (such as furnishing information, sometimes judgmen-
tal, to a computer) for others (such as decision-making).

It is hard to believe that the company or government that
has such systems dealing competently, but not expertly, with
suitably selected problems will dominate all competition, as
claimed by enthusiasts for Japan’s fifth-generation project and
for an expensive American response in kind. The most that can
be expected is that expert systems may someday take their place
alongside planning charts, management information systems,
and professional training programs as useful tools for improving
overall performance.

A genuine danger, however, faces the company or govern-
ment going that route. To the extent that junior employees using
expert systems come to see expertise as a function of large knowl-
edge bases and masses of inferential rules, they will fail to pro-
gress beyond the competent level of their machines. With the
leap beyond competence to proficiency and expertise thus inhib-
ited, investors in expert systems may ultimately discover that
their wells of true human expertise and wisdom have gone dry.



CHAPTER 5

COMPUTERS IN THE CLASSROOM:
TooLs, TUTORS, AND TUTEES

[T1rue computer literacy is not just knowing how to make use of
computers and computational ideas. It is knowing when it is
appropriate to do so.

Seymour Papert
Mindstorms (1980)

WHILE THE GENERAL PUBLIC exhibits an intense yet detached
interest in the future of intelligent computers, much as it does
in the space program, medical research, and other scientific de-
velopments, the subject of the role of computers in education
arouses in many parents an almost visceral reaction of protective
instinct for their young. Knowing that, computer companies ex-
ploit the anxiety of parents in advertisements warning that a
computer deficiency in the educational diet of their offspring
can lead to serious impairment of their mental growth and later
intellectual health. Without any clear idea of what the damage
will be or what computers can do to avoid it, frightened parents
spend millions of dollars purchasing home computers for their
children and clamor at the doors of their children’s schools de-
manding the introduction of computers in their classrooms.
Appropriately offended by the commercial exploitation, crit-
ics of the computer are fighting back. In a recent article in the
Los Angeles Times, for example, Jonathan Kellerman, a child
psychologist and associate professor of pediatrics at the Univer-
sity of Southern California, likened computer salesmen to those
hucksters of the late 1940s who traveled throughout Appalachia

122



Computers in the Classroom: Tools, Tutors, and Tutees 123

showing pictures of grotesquely injured babies to promote the
sale of expensive, and allegedly safe, infant highchairs. Perhaps
an even closer analogy would be between computer sales tech-
niques of today and those of the door-to-door encyclopedia sales-
men of a generation ago, who contrived to frighten insecure
parents into outlays of hundreds of dollars for books that in them-
selves contributed little to their offspring’s education and were
already available in school libraries. Without any serious discus-
sion of how the computer could and should be used in education,
Kellerman condemns the computer as a provider of “instant
gratification,” an “interloper,” and “an electronic baby sitter.”
Such irate responses, while understandable, do our children al-
most as great a disservice as the emotionally unsettling ads hawk-
ing the machine.

Advocates and critics alike all too often fail to make clear
what the proposed use of the computer they are praising or
condemning is, and why such a use is or is not a good idea.
Detailed discussion is both time-consuming and space-consum-
ing, and makes more difficult reading than do the snappy ads
and retorts, but more of it is needed if the proper role of comput-
ers in education is to be established. That is our purpose here,
for while we feel there is a proper place for computers in educa-
tion, we feel as well that most of the educational software availa-
ble today is inappropriate and, indeed, that computers are today
being used in ways that may eventually prove detrimental.

Opposed as we are to efforts to assign human-like roles to
computers or computer-like roles to human beings in the class-
room, we are not among those skeptics who demand “scientific”
documentation of success before adopting any innovation. Nor
would we believe such evidence were it produced. Documenta-
tion of failures also leaves us unconvinced. The human mind
is much too subtle a subject for “scientific” treatment. A child
obviously can learn useful things while interacting with a com-
puter that various tests will fail to uncover, and he also can
verifiably learn lessons, intended or otherwise, that are either
irrelevant or useless because they cannot be made to work in
real situations. Furthermore, an experiment involving the com-
puter may appear to have enhanced learning when it is really
the attention generated by the experiment that produced the
results. (We are reminded of the famous study by the industrial
psychologist Elton Mayo on the effect of illumination upon per-
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formance. The original lighting in a factory was modified, and
production improved. Several further modifications suggested
by industrial engineers produced further improvements in per-
formance. Excited by their findings, the engineers returned the
illumination to its original state and hastened away to write up
their recommendations to improve the factory lighting, only
to be informed that the reversion to the initial situation im-
proved production still further. The only conclusion to be drawn
was that the attention induced by change produced temporary
improvement, and the effect of the actual lighting tested was
obscured by those effects.) For such reasons it would be a mistake
to shy away from an educational innovation until it has been
conclusively “proved” effective or to accept change based on
nothing more than observed improvements.

What is needed is an understanding of the learning processes
of children, an understanding textured and nuanced enough
to distinguish between different types of skills. Only then should
we come to commonsense conclusions about the potential role
for computers. We shall review here various arguments in favor
of a variety of uses of computers in education advanced by articu-
late advocates and, when appropriate, shall present our contrary
views.

Let us look then at what computers can offer. Perhaps the
least controversial way computers can be used is as tools. Teach-
ing aids, from paintbrushes and typewriters to chalkboards and
laboratory demos, can sometimes be replaced to everyone’s great
advantage by suitably programmed computers.

Besides its use as a tool the computer has the potential to
perform tasks usually asked of teachers; for example it can con-
duct drills in such subjects as spelling, and do so in a more versa-
tile, interesting, and interactive way than any book. The
computer can also help students practice applying what they
have learned. Not only can an almost endless number of subtrac-
tion problems be presented, but they can be put pictorially,
graphically, verbally, and in other formats not usually present
in books. Distinct from drill and practice is the hoped for use
of computers as coaches, the role dearest to the heart of conscien-
tious teachers. As coach, the computer would develop an under-
standing of the individual student, of his or her strengths and
weaknesses, and would tailor instruction accordingly. It would
even provide advice and hints and pose problems at the appro-
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priate speed and in the best pedagogical order. Sometimes the
two uses of computers—as overseers of drill or practice and as
coaches—are lumped together and termed the use of computers
as tutors, which is the usage we have adopted. In many publica-
tions the various attempts to use the computer as teacher are
referred to as Computer Aided Instruction (CAI).

Of increasing interest, thanks to a computer language and
learning environment called LOGO now being widely mar-
keted, is the use of the computer as tutee. The ingenious theory
behind the development is that children will learn to think more
rigorously if they are put in the role of teacher of a literal-
minded, but patient and agreeable, student—the computer.

We shall now take up in turn the computer’s role as tool,
tutor, and tutee.

The Computer as Tool

The use of computers as tools is the easiest to describe and evalu-
ate. Computer simulations are generally good learning tools.
They do, however, raise some problems and must be put into
perspective. On the positive side, it is easy to see that they can
give children the opportunity to take an active and imaginative
part in the study of domains that are otherwise difficult or impos-
sible to bring into the classroom: Evolution is too slow, nuclear
reactions too fast, probability too counter-intuitive, factories too
big, much of chemistry too dangerous.

If a teacher is explaining how money grows at a given interest
rate, for example, the computer can simulate the growth, com-
pressing each year into a second, and graphically exhibit the
outcome. By changing a number the student can vary the inter-
est rate and immediately observe the effect. Simulations of bio-
logical and environmental systems have also been developed.
As regards the teaching of physics, Alfred Bork writes:

Our most widely used student-computer dialogue is MOTION, an
“F = ma” world for the student to explore freely. Students control,
in a highly interactive manner, the force laws, equation constants,
and initial conditions. Thus, they can examine many more situations
than they can in the “real” world, with much more control. Further,
they need not view the systems only in configuration (x-y) space,
but can plot any two or three physically meaningful variables, thus
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moving toward viewing the system as existing in a wide variety
of spaces normally unavailable. The very wide use of this dialogue
by students not enrolled in physics classes testifies to its success.!

In the future such simulations will surely become more com-
mon, helping students of all ages in all disciplines develop their
intuition. Simulations can also help to develop the problem-
solving skills students now learn through traditional instruction.
Such skills include hypothesis formulation and testing, control
of variables, estimation, logical deduction, combinatorics, data
collection, data organization, decision-making, and pattern
identification.2

Twila Slesnick, former director of mathematics and computer
education at the Berkeley Lawrence Hall of Science and now
senior editor of Classroom Computer Learning, notes:

[R]esearchers suspect that using simulations will help students un-
derstand the concept of modeling. This includes being able to distin-
guish between a model and reality, being able to identify the
limitations of a model, being able to evaluate the information the
model presents, and being able to distinguish between the real
consequences of actions and the hypothetical consequences of in-
teraction with a model.?

Of course, there are pitfalls. Since learning skills require con-
crete cases, it seems only common sense to stick to the world
of real objects when there is no compelling reason to use simula-
tions: Basic electricity should be taught with batteries and bulbs.
Also, since the social consequences of decisions are difficult to
quantify, they are often missing from simulations.¢ The first diffi-
culty can easily be avoided, however, and the second is not
serious in cases where the social consequences are well under-
stood. For example, a Stanford anthropology professor has pro-
grammed a model of the marriage practices and land inheritance
traditions of societies in the Himalayas. The students can vary
the marriage laws, from one man marrying several women,
through monogamy, to the other extreme, and they can read
off the result in land distribution several generations down the
line. By manipulating the variables in the system students can
see both the immediate and the long-term effects of changing
marriage customs.

There may, however, be an attendant risk. The attraction
of simulations could lead disciplines outside the sciences to stress
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their formal, analytic side at the expense of subdisciplines based
on informal, intuitive understanding. The sciences are domains
that in principle are understandable in mathematical terms,
while the humanities, such as literary criticism and traditional
history, make no attempt to put their understanding into num-
bers. The social sciences, however, have both formal and infor-
mal aspects, and the existence of the computer as simulator may
reinforce the tendency of the social sciences to imitate the natu-
ral sciences even when it is not appropriate. The educational
success of interactive simulations, for example, may tempt politi-
cal science departments to emphasize mathematical models of
elections at the expense of political philosophy, which asks ques-
tions about the nature of the state and of power. Similarly, eco-
nomic history might be pushed aside by econometrics with its
mathematical models. Not only is there danger of undue empha-
sis on quantifiable aspects of a field, but a more serious danger
is that the student will focus on the particular assumed relation-
ships between variables made precise and explicit in a simulation
and overlook the real relationships stated more vaguely in a
qualitative, historical treatment of a subject. That would be a
grave mistake in the social sciences, where no one can state
the dynamic relationships governing elections or economies with
anything resembling the accuracy or completeness of the laws
of physics. Every election campaign or economic swing offers
vivid reminders of the inadequacy of predictions based on simu-
lation models. Such risks of distorted emphasis on the formaliza-
ble aspects of a field are not inherent in the use of computer
simulations. However, those dangerous pressures will grow in
direct proportion to the value of computer modeling in the natu-
ral sciences.

Along with simulation, another promising use of computers
is in the creation of learning environments. Here, rather than
teaching some particular goal or skill, the computer serves as
a tool kit for coping with events in a micro-world. In the course
of using the tools the user figures out how to solve problems
in the micro-world and so learns the conceptual structure of
the domain.

One of the most promising developments in that area is the
merging of learning environments and computer games. Dr.
Ann Piestrup, founder of The Learning Company, describes her
goals as follows:
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The idea was to create a world where failure is impossible, success
is rewarded with power, and mastery of knowledge leads to greater
challenges. We wanted to build an environment that is always con-
trolled by the learner, in which the game itself provides a landscape
of concepts for students to discover. Risk-taking is encouraged.
There is feedback, but it is gentle. Finally, mastery of the game
also achieves a curricular goal.’

That ideal was approached in The Learning Company’s highly
acclaimed game Rocky’s Boots and realized in Robot Odyssey
I. The objective of the latter is to get out of a futuristic city
called Robotropolis. The player must struggle through five levels
of sewers, skyways, and subways by designing robot vehicles.
These friendly robots come equipped with sensors, thrusters,
bumpers, and grabbers, which the learner programs to make
the robot do his or her bidding. The programs consist of se-
quences of logical operations such as “and,” “not,” and “or”
that are “wired” into simulated logic chips by the player and
which control the robots. Dr. Piestrup explained to us that such
games

. require very intricate problem solving skills. The player must
remember a lot of things and how they fit together. A player may
have to map areas containing dozens of rooms, intertwining path-
ways, and many layers. Developing logical strategies, the player
might discover that he or she can pick up an object in one part
of the game world, and leave it in a place where it will be useful
later, for example.

There is no doubt that a child interacting playfully with this
software learns the conceptual structure of the game domain.
It seems clear too that the child acquires problem-solving skills
such as the ability to break down a problem and solve it step
by step and to formulate strategies that can be used to organize
and chose among the available step-by-step procedures. Such
a game would presumably take a beginner as far as competence.

It even encourages the kind of involvement required to pro-
gress to proficiency. Hubert’s son, Stéphane, was deep into
Robotropolis ten minutes after loading the game. Rather than
standing outside the maze as one does when solving a maze
problem in a book, he was so bodily and mentally immersed
in the world of the game that Robotropolis overflowed the screen
into the living room. He pointed to the closet on the left to



Computers in the Classroom: Tools, Tutors, and Tutees 129

explain where he had been and to the fireplace on the right
to warn of the guardian robots lying ahead.

What needs to be asked is: Does the game take advantage
of involvement to encourage the learner to go on to proficiency
and expertise in its worldP Does the child learn an approach
to situations that will facilitate the passage from problem-solving
to holistic similarity recognition in the future? Does the child
learn what we and Dr. Piestrup have in our discussions come
to call “grokkingP’’6

Unfortunately game designers seem to think that mastery
consists in grasping more and more complex conceptual domains
by means of more and more sophisticated problem-solving skills.
That leads to games in which the learner solves progressively
more difficult problems, where “more difficult” means problems
that require going beyond the previous solution. That sort of
game may well lead to ever increasing competence, but it inhib-
its crossing the line to intuitive expertise, since as soon as one
begins to perfect a skill one finds oneself in a more complex
environment and hence back in the role of a beginner.

Dr. Piestrup agrees that the ideal learning environment
would teach not only logical problem-solving skills but intuitive
grokking skills as well. A grokking game would begin like a
problem-solving game, requiring the learner to discover a proce-
dure for arriving at the solution to a problem. That would enable
the student to arrive at competence while fostering the sort
of involvement required for going further. But then, once the
learner had the procedure well in hand, the program would
encourage the student to forget the procedure and leap directly
to the solution. Finally, the program would lead the learner to
jump intuitively to the solution in situations that were similar
to the one with which he or she was already familiar.

An elementary game of that sort might be an estimation
game. Here the player would measure the length of an object
by seeing how many times a unit measure can be laid end to
end beside it. The goal is not to measure more and more compli-
cated objects under increasingly difficult conditions, but rather
to develop a repertoire of typical objects with known lengths
so that one can judge immediately the length of a given object
without having to measure it. After the player has measured
several objects of differing lengths, he would be shown objects
he had already measured and be rewarded for speed of response
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or, what comes to the same thing, shown objects so briefly that
he does not have time to measure them in a procedural way.
Next would come unfamiliar objects of the same length as objects
already measured. Winning would put a premium on rapid intu-
itive estimation of the length of those unfamiliar objects.

A more advanced game in the spirit of Robot Odyssey would
teach the recognition of functional similarity required for exper-
tise. An expert chip designer can see at a glance that two chip
diagrams are functionally similar even though many gates are
different, or that two diagrams are functionally different even
though only one logic gate is changed. That may seem like an
amazing feat, and it is, but you are using a similar expertise
this very minute. Words you see and understand almost instantly
would have an entirely different meaning if only one letter were
changed; you understand other words as synonymous even
though all the letters are different. Being an intuitive reader,
you grasp words as a whole rather than figuring them out on
the basis of the letters that make them up. Experiments show
that you are able to recognize whole words faster than you are
able to recognize single letters.?

The budding chip designer engrossed in Robot Odyssey
should be motivated to develop the same sort of intuition. After
designing many chips for a range of purposes, let us suppose
he could attend a chip fair where he could choose among chips
wired according to a variety of chip diagrams. However, each
chip would be displayed only briefly. At first he would see dia-
grams of chips he had already constructed. He would presumably
be able to remember their function without figuring it out from
scratch. Later he would be shown diagrams of functionally equiv-
alent chips. Getting ahead in the game would depend on how
quickly he could spot the sort of chip he needed without figuring
out its function the way a computer would. The speed pressure
would be intended not to encourage anxiety but to promote
confidence in intuitive leaps. In this it would play rather the
same role as high-speed practice does in learning speed reading;
the student must be pushed to see that holistic intuition is possi-
ble.

Learning environments that are also games are a great idea,
and we envy the children brought up on them, but the concepts
they teach are not easily integrated into the curriculum as it
now stands. Perhaps someday that will change, but for the time
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being it seems important to design learning environments that
can be used in the classroom as part of the existing curriculum.
Judah Schwartz, director of the Educational Technology Center
at Harvard, has this goal: “The ideal piece of software is a tool
program that focuses on a well-defined curricular content while
also being totally open-ended and flexible. What’s more, it puts
the student in control—the student leads the ‘conversation’ with
the computer and the computer simply displays the conse-
quences of the student’s actions.”® To show how that can be
done, Schwartz has developed The Geometric Supposer, a lim-
ited domain tool that aids the student in grasping geometric
relationships. He explains:

The program allows the user to make any construction on any trian-
gle that he or she wishes. . . . It therefore becomes a simple matter
to explore whether the consequences of a given construction on
a given triangle are dependent on some peculiar property of the
triangle or if there is a possibility of a more general result obtaining.
Needless to say, neither possibility nor plausibility constitutes proof.
But conjecture, in this instance with the aid of The Geometric Sup-
poser as intellectual amplifier, can assume its proper supporting
role.?

In conversation Schwartz told us that “in the past two years
we’ve had three new theorems from tenth graders.”

In addition to their use in simulation and as intellectual tools,
computers function as classroom tools in many other ways. As
efficient electronic chalkboards distributed throughout the class-
room, computers enable several students to work together on
a problem or essay displayed on the screen and to store their
result instead of having to erase it before turning to the next
problem. Thanks to computer networking, students can share
their chalkboard with students in other schools, even schools
in other areas. Thus the computer need not isolate students,
each before his own terminal, but opens up exciting new possibil-
ities of social learning. The computer is without a doubt a won-
derful tool permitting many things never before possible.

The Computer as Tutor

On balance, the use of the computer as a tool is relatively unpro-
blematic. The use of the computer as tutor or tutee, however,
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presents a picture of success in limited domains, along with the
same tendency to base extravagant claims on those successes
as is found in fields claiming computer intelligence. Attempts
to use computers as tutors suffer from exactly the same difficulties
that have beset the attempt in Al to make computers generally
intelligent; the psychological assumptions underlying the use
of the computer as tutee are the same assumptions that give
rise to the unjustified belief that expert systems will someday
outperform the experts. Unqualified optimism must always be
tempered by a careful look at what has been done and what
more can be done. In education that means asking what sorts
of skills and what levels of skill can and should be taught using
computers.

Failure to raise the question of the proper place of the com-
puter as tutor and tutee rests on the deep unquestioned assump-
tion expressed, as if self-evident, in the “Introduction” to a recent
influential anthology, The Computer in the School: Tutor, Tool,
Tutee: “Despite the extensive innovation in computing, much
remains the same—particularly in the way computer logic struc-
tures are related to human thought structures.”?® Since nothing
more is said of the way human and computer thought structures
are related, one gets the impression that they are unproblemati-
cally similar. That view is not new. As we have already seen,
once the Greeks invented logic and geometry, the idea that
all expertise might be reduced to some kind of calculative reason-
ing has fascinated most of the Western tradition’s rigorous think-
ers. So we arrive at the self-evident claim that computers and
people alike are rule-following, symbol-manipulating, rational
beings. One assumes what has come to be called the information
processing model of the mind and proceeds from there. That
is just what people have done for some time in the fields of
Al and knowledge engineering—and are now doing in their
attempts to use the computer as tutor or as tutee.

Behind the hope that computers can aid or even replace
teachers is the idea that the teacher’s understanding of both
the subject being taught and of the profession of teaching consists
in knowing facts and rules, the job of a teacher being to make
the domain-specific facts and rules explicit and convey them
to the student, either by drill and practice or by coaching, de-
pending on the complexity of the subject to be taught. If that
were indeed the way the mind works, the teacher could transfer
his facts and rules to the computer, which could replace him
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as drill sergeant and coach. But since understanding doesn’t con-
sist of facts and rules, the hope that the computer will eventually
replace the teacher is fundamentally misguided.

That is not to say that computer tutors have no proper place
in the classroom. It follows from our description of skill acquisi-
tion that, contrary to current avantgarde opinion, there is indeed
nothing wrong with using computers as drill sergeants. There
is no reason to sneer when the computer is used as “a ‘teaching’
machine programmed to put children through their paces in
arithmetic and spelling”!! or to think of the use of the computer
for drill and practice, as Seymour Papert, the creator of LOGO,
does, as an instance of the QWERTY phenomenon—getting
stuck like the typewriter keyboard in an early and inappropriate
use of a new technology.

Wherever procedures are learned, computers can serve as
diagnostic aids. John Seely Brown’s use of the computer to tutor
subtraction, and to diagnose and classify more than ninety sub-
traction bugs, shows the power of the computer to facilitate
the acquisition of procedural skills that involve following and
debugging strict rules.!2 Brown and his co-workers at Xerox have
developed subtraction bug hunting into such an art that they
have been able to pinpoint the locations in the United States
where particular subtraction bugs thrive. They have suggested
that students introduce such buggy rules when they try to ac-
count for their mistakes, and they have even been able to corre-
late students’ use of a particular aberrant rule with his or her
absence from school on the particular day when a certain appli-
cation of the rule was taught.

As in the case of simulation, the only danger in the use of
the computer for drill and practice and for diagnosis arises from
the temptation to overemphasize the sort of training in which
the computer works, precisely because it works so well. The
efficiency of the computer—the way it provides tireless and non-
judgmental repetition, instant feedback, different problems for
each student, updated records of student progress, and, at least
for the present, high motivation—encourages the expansion of
that part of the curriculum where drill and practice are appropri-
ate. Under such pressure mathematics might degenerate into
addition and subtraction, English into spelling and punctuation,
and history into dates and places. This is all that is sinister about
the success of computers in managing drill and practice.

Drill and practice seem a counterproductive use of computer
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technology to Papert only because he thinks of intelligence as
simply getting the rule: If our minds were like computers they
would first acquire a perhaps slightly erroneous rule, next get
the rule debugged, and then use it accurately thereafter. Thus,
if minds were machines, it would be incomprehensible that drill
and practice are needed at all. The simple fact that even brilliant
students need to practice to acquire the ability to do grammar
or subtraction and that athletes and performers have to continue
to practice even after they have mastered a domain suggests
that something fundamental has been left out of Papert’s Pla-
tonic position. In fact, four different functions of repetition have
been ignored. First, even in subjects like spelling, drill is required
simply to fix the rule in memory. Computers, by contrast, re-
member instantly and perfectly. Second, in subjects like subtrac-
tion, the beginner has to learn what differences are irrelevant
(for example, that all cases of having to borrow 1 from the next
column are the same no matter which numbers are involved)
and which differences make a difference (that, for example, one
cannot borrow from the next column if it is zero). That amounts
to debugging the rules. Third, students must learn that some
features in the context, such as the physical size and the orienta-
tion of the numbers, are irrelevant, while others, such as position,
are crucial. They must practice to decontextualize, whereas com-
puters have no context to worry about. Finally, as our skill model
makes clear, practice is necessary even for the expert, since
by continually exercising his skill the expert, who isn’t employing
rules at all, develops a more and more refined repertoire of
experiences to draw upon.

Thus there is no reason to denigrate drill and practice as
opposed to learning by acquiring and debugging rules. If com-
puters can put students through their paces more painlessly than
traditional methods, more power to them—provided, of course,
that the cost of the hardware and especially the software is justi-
fied by the improvements the computer offers over conventional
workbooks, and that the subject matter can be appropriately
presented in a drill and practice format.

A step beyond drill and practice, but still committed to the
rule-following view of mind, we find branch and test systems.
These systems, perhaps best exemplified by Control Data’s ap-
propriately named PLATO system, assume that acquiring knowl-
edge consists of learning prespecified rules and data. At each
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point the user is presented with a multiple choice situation and,
depending on his response, is sent either forward to new material
or back to relearn a fact or rule.

Branch and test systems can be very effective, for upon their
highly structured substrate powerful graphics and intellectual
tools can be laid. That is true of PLATO, the paradigm computer
teaching system and a candidate for widespread use in the com-
puterized classroom of the future. But branch and test systems
like the core of PLATO, Micro-PLATO—the part of PLATO
that runs on microprocessors—are highly ordered and choice-
oriented environments that encourage the organization of
knowledge and curricula into static patterns. PLATO, in spite
of its other potentials, is used primarily to arrange and 1mpart
curricula in such a structured manner.

The problem with such systems is not that they don’t have
a place—they are often very appropriate means of conveying
information—but that their place may be more in training than
in education. In the words of Harvard’s Judah Schwartz: “Al-
though computer-assisted instruction is no longer thought to
be a promising route to a golden age of education (except by
some thoughtless and greedy purveyors of software), it does seem
to have many uses for training.”?3 Most critics agree that what
is lost in such environments is the process by which the student
learns to see connections and similarities for himself and to make
his own choices. All that we then have is a program used to
shape the student’s mind to conform to a prespecified body of
knowledge.

The military appears to recognize an important feature of
branch and test, which we in the civilian world should clearly
understand. The distinction between education, a process aimed
at drawing out the abilities of the student, and training, in which
the student is learning to negotiate a structured domain, is cru-
cial. We’ll illustrate the difference by comparing two videodisk-
based branch and test training systems, both designed for the
army by Litton Industries.

The first, intended only as a demonstration system but never-
theless a good example, uses the interactive branch and test
capacities of a computerized videodisk to train soldiers to a mini-
mum level of competence in diagnosing jeep malfunctions. Com-
petence, in this case, means the ability to find and repair simple
problems that would prevent a jeep from running. The designers
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of the system do not presume to impart the expertise of a master
mechanic.

In the second, the army is using the same sort of interactive
videodisk technology to teach “leadership and counseling from
a platoon leader’s standpoint.” Film vignettes, the interactive
capabilities of the disk, and branching are used to create a simula-
tion in which the trainee is able to make decisions from a pre-
specified set of alternatives at prespecified “choice points” and
receive immediate feedback on the adequacy of his selected
choice. In this case the student is being “trained” in an aspect
of human relations—leadership and counciling—that cannot, like
jeep repair, be partially abstracted from the everyday unstruc-
tured world. The system will teach the student to respond with
one of a preprogrammed set of canned responses. That may
be desirable in the army, where the leadership being constructed
is a subordinate and merely competent bureaucratic leadership,
but it is hardly desirable in the larger unstructured world of
democratic society.

More flexible kinds of computer tutors, based upon attempts
‘to represent the student’s perspective, are called coaching sys-
tems. Such systems are being developed by John Seely Brown’s
Al group at Xerox PARC. We asked Richard Burton, an associate
of Brown, to explain the current state of research at Xerox. He
replied:

You could view the coaching system as an extension of the help
key. . . . What the intelligent coach is trying to do is to develop
a model of what the student is doing so that, when he pushes that
key, it has a better idea of what to tell him.

OK. How do you proceed?

There are several ways to track the student. The more complicated
way is to try to intuit what the student’s goals are, and you can
do that by having a model of what general goals are and trying
to parse his actions into a general goal plan and infer his goals.
And once you infer his goals you can try to give help.

As you know, little progress has been made in the construction
of systems that can infer goals within unstructured areas, for
that progress would presuppose a satisfactory model of back-
ground understanding. Where, then, has progress been made?

Where you win . . . is where you know what the student is trying
to do because you assigned it in the problem, so you don’t have
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to infer his goals, so that makes it a little bit easier. Like in geometry,
you know he’s trying to prove a particular theorem. In general,
inferring someone’s intentions is hard, and it helps a lot to know
ahead of time what kind of things are likely.

Xerox’s coaching successes have been in closed and predicta-
ble domains. Consider their best-known coach, designed to help
students improve their play on a PLATO game called How the
West Was Won. The game forms a closed micro-world. The
coach can simply wait to interject its advice until the student
uses a less than optimal strategy or misses an opportunity. At
Xerox the same strategy is being used in teaching LISP, a pro-
gramming language.

But will the same strategy work here, in the open-ended environ-
ment of a general-purpose programming language like LISP?

It’s certainly harder. The idea is that you could build it incremen-
tally, so it would know about parenthesis errors and the names
and uses of certain basic functions. If I happen to make a mistake
which it knows about it’ll at that point come in, and all the rest
of the time it’ll just sit there and I won’t know it’s there.

A LISP tutor that understands the syntax of the language
and corrects the programmer whenever he attempts to violate
it is, as Burton has said, “just an extension of the help key.”
But the step from parenthesis errors to the kind of tutoring
that requires a model of the student’s intentions is a step outside
the closed domain of the micro-world. It is not a matter of “incre-
ments,” and there is no reason to believe that a full-scale LISP
tutor will ever be built.

Still, with tools and machines becoming increasingly complex,
there are ever more ways of using them incorrectly, or simply
in a less than optimal fashion. It would certainly be valuable
to have coaching systems that could engage their users in a
sort of on-the-job training. Word processors, for example, could
perhaps help their users become more expert in their operation.
An intelligent “help” facility might note that the user always
deleted by using the backspace key and infer that he didn’t
know how to delete by words, lines, and sentences.

That is the short-term goal at Xerox, where, Burton told us,
researchers are looking forward to working coaching into “all
kinds of training machines and instrumentation. Tanks maybe.
. . . Right now we’re worried mostly about copiers.” But a recent
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study of human-machine communication argues that even the
relatively tractable problems of automated coaching for users
of machines like copiers may be incredibly difficult, for the ma-
chines do not share the real-world situation of their users. A
copier, for example, has no way of understanding what its user
is trying to do. It may be programmed to expect the user to
put an entire manuscript into the input hopper, and may give
advice accordingly. But the user, thinking of more primitive
copiers unequipped with such hoppers, may have in mind a
one-sheet-at-a-time operation. In such cases, far from aiding the
inexperienced user, coaching systems may only initiate a “dia-
logue of the deaf” that further confounds the confused human
being.14

Yet because computers are so powerful and so logical, it seems
there must be a way to use them to foster sophisticated under-
standing and high levels of skill. It is that hope which makes
both those who want to use the computer as tutor and those
who want to use it as tutee condemn current software as too
conservative. Our five-stage model of skill acquisition, however,
enables us to understand why progress in teaching higher levels
of skill acquisition has not taken place and to cast a cold eye
on such hopes.

First, let us look more comprehensively at the use of com-
puter as tutor. The assumption behind CAI is that the success
of computerized instruction should be extensible to areas where
what is required is a real understanding of the student and the
domain to be taught. The success of Al programs, it is claimed,
makes such an extension possible. A recent report commissioned
by the National Academy of Sciences is based on the assumption
that AI has been a success and will continue to forge ahead.
The report begins:

[Wlork in artificial intelligence and the cognitive sciences has set
the stage for qualitatively new applications of technology to educa-
tion. What is required to move forward is increased support for
basic interdisciplinary research, focused by the development of ad-
vanced learning systems employing the methodologies and equip-
ment of artificial intelligence.15

Such claims should give us pause. If using Al to help tutor
copier use is difficult, imagine the problems with making a ma-
chine tutor a real-world subject. It would require giving the
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computer not only an understanding of the domain to be taught
but an understanding of what the student already knows and
a way of inferring how he is conceptualizing the problem. Lack-
ing such real understanding, the computer, like a talentless
teacher, will fail to pinpoint the student’s confusions and will
not be able to draw on the student’s background understanding
to achieve breakthroughs.

For example, if one wishes to educate, not simply train, a
student in physics, one has to share the commonsense physics
the student brings to the learning situation. Commonsense phys-
ics is our understanding of why things bend or break, move or
don’t, bounce or shatter, and so on. That everyday understanding
has turned out to be extremely hard to spell out in a set of
facts and rules. When one tries, one either requires more com-
mon sense to understand the facts and rules one finds or produces
formulas of such complexity that it seems unlikely that they
are in a child’s mind. In fact, there may be no theory of common-
sense physics at all. By playing with all sorts of liquids and solids
for several years the child may simply have built up a repertoire
of typical cases of solids and liquids and typical skilled responses
to their typical behavior in typical circumstances. When that
experience is coupled with what seems to be an innate human
ability to recognize a case at hand as similar to a learned typical
case without decomposition into features and rules, common-
sense physics is the result. Anyone skilled at getting around in
the world has learned that to keep something moving you have
to keep pushing it. The teacher naturally appeals to such intu-
itions when diagnosing a student’s difficulty with problems in
which, for example, momentum is conserved.

Papert and Minsky give an excellent example of the sort of
know-how that makes up commonsense physics:

Many problems arise in experiments on machine intelligence be-
cause things obvious to any person are not represented in any pro-
grams. One can pull with a string, but one cannot push with one.
One cannot push with a thin wire, either. A taut inextensible cord
will break under a very small lateral force. Pushing something af-
fects first its speed; only indirectly its position! Simple facts like
these . . . have not been faced up to until now.1¢

And now, even though such problems have been faced up to
for a decade, no one in Al has a clue how to deal with them.
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Spelling out a teacher’s understanding of physics—an under-
standing partly conceptual and partly embodied in his or her
mastery of skills for functioning in the physical world—would
seem a hopeless task given the years of experience that have
gone into the teacher’s understanding of the field, not to mention
the time the teacher spent as a child developing an intuitive
feel for such things as solids and liquids. But the Socratic assump-
tion is invoked, usually as self-evident, to save Al and CAI re-
searchers from despair. After all, if the child can come to
understand commonsense physics, one ought to be able to spec-
ify the facts the child knows and the rules he uses to relate
them, and so make a model of the child’s knowledge—which,
of course, could then be updated with more and more sophisti-
cated rules as the child learns to debug his earlier hypotheses.
Likewise, the physics teacher, since he understands physics, must
already have a program for that domain, which we simply have
to extract and put into the teaching system.

Researchers admit that extracting and representing common-
sense understanding will be difficult. Minsky noted ten years
ago:

Just constructing a knowledge base is a major intellectual research
problem. . . . We still know far too little about the contents and
structure of commonsense knowledge. A “minimal” commonsense
system must “know’ something about cause-and-effect, time, pur-
pose, locality, process, and types of knowledge. We need a serious
epistemological research effort in this area.!?

But perhaps the problem is more than difficult. Philosophers
from Plato to Piaget have carried on serious epistemological
research in this area for two thousand years without notable
success. That, plus the fact that no significant progress in Al
has been reported since the commonsense knowledge problem
surfaced a decade ago, suggests that, as our five-stage model
of skill acquisition predicts, there is a limit to how far one can
go with a model of everyday know-how based on the sorts of
rules and features people can report.

The work of Patrick Suppes of Stanford University provides
a cautionary tale of high hopes, disappointing results, and finally
an appeal to traditional philosophical assumptions to sanction
further research in CAI. Twenty years ago Suppes was one of
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the pioneer researchers in, and an outspoken enthusiast for, CAIL
On the basis of his development of some of the earliest successful
drill and practice programs for arithmetic he predicted that “in
a few more years millions of school children will have access
to what Philip of Macedon’s son, Alexander, enjoyed as a royal
prerogative: the personal services of a tutor as well informed
and responsive as Aristotle.”® But, as is often the case in fields
related to Al, that optimism turned out to be another instance
of the first-step fallacy. As an authority on CAI recently re-
marked: “The revolution predicted for education 25 years ago—
when it was thought that computers soon would replace teachers
as the primary source of instruction—remains elusive.”1?
During the two decades since his prediction, Suppes has de-
veloped highly successful programs in a discipline ideally suited
for sophisticated drill and practice: mathematical logic. In recog-
nizing and constructing proofs, there are clearly right or wrong
answers, errors are easy to recognize, and commonsense physical
knowledge, not to mention the social dimension of human life,
is irrelevant. But even in this area the programs never cross
the gap between drill and practice and coaching, between train-
ing in logical techniques and understanding the conceptual
structure of the field. There is an art to writing short and elegant
proofs, and intuition is required to know when to attempt to
write one. Suppes’s programs do not even attempt to teach that
art. They tell the student when his proof is valid and when it
is incorrect, and give hints as to what rule to use next. They
also give tests and determine from the scores when the student
is ready to go on to more difficult material. However, as they
do not take into account situational elements but only objective
features, and in no way illuminate relevant issues or appropriate
strategies, they remain drill sergeants, not coaches. And even
in this very restricted subject, which reminds one of the narrow
domains of expert systems rather than the broad areas addressed
by Al, limits on the computer’s capabilities gradually became
obvious. An Aristotle-like tutor turned out to be far out of reach.
In a recent article Suppes acknowledged that computers will
not be first-rate teachers unless researchers can solve four funda-
mental problems: the need to talk, to listen, to know, and to
coach. Those desiderata reveal why computerized coaches must
remain a dream as long as computers cannot develop skills and
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cannot share the human form of life. We must look at each
difficulty in detail if we are to understand why it is futile to
hope to use the computer tutor as more than a drill sergeant.

The first problem Suppes lists is that of getting computers
to talk:

We have the capacity for the computer to talk. What we need,
however, is a better theory about what is to be said. For example,
when I serve as a tutor, teaching one of you, or when one of you
is teaching me, intuitively and naturally we follow cues and say
things to each other without having an explicit theory of how we
say what we say. We speak as part of our humanness, instinctively,
on the basis of our past experience. But to get a computer to talk
appropriately, we need an explicit theory of talking.2

Unfortunately, there is no such theory and no reason to expect
one to exist. Suppes acknowledges that conversational skill is
intuitive, based on past experiences. Thus it is at level five of
our five-stage model. No wonder the search for a formalizable
theory of dialogue—the kind Suppes’s project requires—has
been conducted without notable progress for more than a decade
by linguists attempting to produce a theory of pragmatics, that
is, of the way language is used. ‘

The second problem is one of continuous speech understand-
ing. As Suppes puts it:

The aspect of dialogue that is technically difficult for us at the pres-
ent time, even more than talking, is that of listening. Without any
question, the problem of defining computer hardware and software
that can listen to a student talk is much more difficult than having
the computer talk to the student.?!

Understanding continuous speech is certainly a skill in which
we are all intuitive experts. As one might expect, the attempt
to find a formal theory that would enable a computer to exhibit
this skill has been an outstanding disappointment in a field rid-
dled with disappointments. Continuous speech recognition
seems to be a skill that resists analysis into features and rules.
What we hear does not correspond to the features of the sound
stream. Depending on the context and on expectations, one
hears a certain stream of sound as “I scream” or “ice cream,”
and so hears a space or pause in one of two different places,
although there is no pause in the sound stream at all. One expert
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effectively emphasized the different ways the same stream of
sound can be heard: “It isn’t easy to wreck a nice beach.”’22

The most successful attempt to use a computer for continuous
speech recognition was that of Newell and Simon’s group at
Carnegie-Mellon, and it was not a great success. As is usual in
the field, no one tried to analyze or document the reason, but
it is generally agreed that although HEARSAY, the CMU contin-
uous speech recognition system, did manage to meet the stipu-
lated condition of recognizing a limited number of words uttered
.by a speaker to whom the computer had been pretuned, the
techniques used pushed computer capacity to the limit and did
not show promise that further work in the same direction on
bigger and faster machines would lead to much improvement.

The efficient and relevant representation of commonsense
knowledge is essential in almost any domain outside of logic
and grammar. So we find Suppes next noting:

To have an effective computer-based system of instruction, we must
transcend mindless talking and listening and learn to understand
and use a large knowledge base. For example, if we were simply
to require information retrieval from a knowledge base, it would
be relatively simple in the future to put the entire Library of Con-
gress in every elementary school. . . .

A different and more difficult question is how to get the sizable
knowledge base to interact with the student. As we come to under-
stand how to handle such a knowledge base, the school computer
of the future should be able to answer any wayward question that
the student might like to ask.23

If the computer could do that, it would have solved a version
of the frame problem, that is, ability to see the relevance of
each part of its knowledge base to the rest of its knowledge.
But as we saw in our discussion of Al, no such solution is in
sight.

Finally, Suppes arrives at coaching, without which a computer
could hardly substitute for an inexperienced teacher, let alone
an Aristotle:

The fourth problem, and in many ways the least-developed feature
of this technology, is the theory of learning and instruction. Even
if you can make the computer talk, listen, and adequately handle
a large knowledge data base, we still need to develop an explicit
theory of learning and instruction. In teaching a student, young
or old, a given subject matter or a given skill, a computer-based
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learning system can record anything the student does. It can know
cognitively an enormous amount of information about the student.
The problem is how to use this information wisely, skillfully, and
efficiently to teach the student. This is something that the very
best human tutor does well, even though he does not understand
at all how he does it, just as he does not understand how he talks.
None of us understands how we talk and none of us understands
how we intuitively interact with someone we are teaching on a
one-to-one basis.?

What. is interesting about Suppes’s acknowledgment of all
four areas of difficulty is his mixture of respect for our intuitive
expertise based on experience and the typical philosopher’s as-
sumption that a formal theory underlies our intuitive skill, or
at least that a theory spelling out such a skill in terms of features
and rules must be possible. That assumption sustains his optimism
that these difficulties are opportunities in disguise—opportuni-
ties to apply for more grants to push forward with the perennial
philosophical task of making explicit the rules or theories under-
lying our skillful and intuitive capacities. Thus in the face of
the unsurmounted and apparently insurmountable difficulties
that have brought Al to a standstill, Suppes is full of hope: “We
are sitting on the edge of a revolution in the way in which
instruction is delivered to students of all ages and varieties. . . .
I hope that the Federal government will provide strong support
for this constructive direction of change throughout the rest
of this century.”?

The report commissioned by the National Academy of Sci-
ences echoes that misleading optimism. In proposing further
research into “expert coaching systems,” the report acknowl-
edges that “effective coaching . . . requires knowledge about
how and when to intervene“2¢ but then goes on to make the
characteristic assumption that such knowledge consists of uncon-
scious rules: “Although such knowledge is usually held tacitly,
even by master teachers, existing computer-based coaching sys-
tems have begun to characterize this kind of knowledge as a
collection of rules that govern computer intervention.”?” The
report also repeats the unfounded prediction that “parallel re-
search in cognitive science and artificial intelligence is within
reach of developing intelligent diagnostic, coaching, and discov-
ery learning systems for a variety of subjects.”?8

Our model of skill acquisition predicts and explains both the
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impasse in building computer tutors and Al optimism. The opti-
mism arises when one takes the first step: a successful use of
the computer for drill and practice to teach beginners some
subject. But as soon as one gets to level two, where situational
elements and judgment are involved, one runs into a stone wall.
If our experience of skill acquisition is to be trusted—and we
have nothing else to trust—our everyday expertise is not
“stored” in our mind in terms of facts and rules at all, but in
our memories of past situations we have already successfully
confronted.

Since computers used as tutors can successfully implement
only drill/practice and branch/test training systems and thus
teach novice or, at best, competent performance, they reinforce
rather than reduce the danger of producing the sort of expert
novices many feel our schools already encourage. As the report
commissioned by the National Academy of Sciences notes: “New
learning systems themselves can become the carriers of cognitive
theory and new principles of pedagogy into classrooms and
homes.”?? Thus instead of remedying inadequate education, CAI
that attempts coaching could easily become part of the problem.

The real danger of CAI is not that our children will become
programmed by drill and practice programs as in 1984, as Papert
prophesied on a recent “Nova” program. The danger is in trying
to teach only what can be rationalized rather than admitting
that the beginning student can use rules only up to a point,
after which he must be allowed to pass beyond analysis to higher
stages of skill acquisition, where human tutors can point out
prototypes and where apprenticeship and practice alone can
produce expertise.

The Computer as Tutee

The same information processing model of the mind that leads
people to try to replace teachers with computers supports the
idea of using the computer as tutee. Instead of assuming that
the teacher’s knowledge of a domain is a program that can be
made explicit, put into a computer and taught to the student,
the student is assumed to acquire knowledge (that is, a program)
in the process of programming the computer. Learning and
learning to program are the same thing. As Taylor puts it:
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To use the computer as tutee is to tutor the computer; for that,
the student or teacher doing the tutoring must learn to program,
to talk to the computer in a language it understands. The benefits
are several. First, because you can’t teach what you don’t under-
stand, the human tutor will learn what he or she is trying to teach
the computer. [Note the Platonic assumption that understanding
something means being able to state it in explicit rules.] Second,
by trying to realize broad teaching goals through software con-
structed from the narrow capabilities of computer logic, the human
tutor of the computer will learn something both about how comput-
ers work and how his or her own thinking works.3¢

In that view one learns by constructing and debugging a
program. Seymour Papert is the most articulate exponent of
such a cognitivist, computational model of human thinking,
which he calls the epistemological view. Like Leibniz, he thinks
even physical skills are implicit theories. “Our strategy,” he tells
us, “is to make visible even to children the fact that learning
a physical skill has much in common with building a scientific
theory.”’s

The microcomputer reinforces the attraction of the cognitiv-
ist’s model of thinking, and Papert’s brilliant insight is that chil-
dren can master that way of thinking by actually programming
the computer, which, since it can deal only with data and rules,
is an epistemological engine par excellence. Programming the
computer would, in Papert’s view, require the child to articulate
his own program by reflecting on and naming the features he
is picking out in his environment and by making explicit the
procedures he is using to relate those features to events in the
learning domain. Papert says:

I have invented ways to take educational advantage of the opportu-
nities to master the art of deliberately thinking like a computer,
according, for example, to the stereotype of a computer program
that proceeds in a step-by-step, literal, mechanical fashion. [W]hat
is most important in this is that through these experiences children
would be serving their apprenticeships as epistemologists, that is
to say learning to think articulately about thinking.32

Papert is dramatic and convincing when he points out the
revolutionary effect that giving the child an explicit grasp of
the cognitivist approach to the mind would have on education.

We are at a point in the history of education when radical change
is possible, and the possibility for that change is directly tied to



Computers in the Classroom: Tools, Tutors, and Tutees 147

the impact of the computer. Today what is offered in the education
“market” is largely determined by what is acceptable to a sluggish
and conservative system. But this is where the computer presence
is in the process of creating an environment for change.33

And like a true revolutionary, Papert sees that actually imple-
menting his cognitivist ideas would transform our understanding
of ourselves and of our whole society:

In a computer-rich world, computer languages that simultaneously
provide a means of control over the computer and offer new and
powerful descriptive languages for thinking will undoubtedly be
carried into the general culture. They will have a particular effect
on our language for describing ourselves and our learning.3¢

Because the stakes are high, it is very important to look at
both the power and the limitations of Papert’s cognitivist view
of education before embracing his educational reform. If our
critique is to be constructive rather than carping, it will have
to be based on a model of the mind that points up the cognitivists’
insights as well as their systematic oversights.

Papert notes that “many people will argue that overly ana-
lytic, verbalized thinking is counterproductive even if it is delib-
erately chosen.”® But he does not take this “flimsy” objection
seriously. Indeed, why should he? In our culture such objections
are usually the purview of defenders of mystical intuition, and
the battle against them was won long ago by procedural thinkers
from Plato to Leibniz. Unless one can provide a concrete alterna-
tive to the dominant view that to learn is to acquire a mental
program, it follows logically that one should use the computer
as tutee to aid the student in perfecting his ability to think proce-
durally. Moreover, such techniques can and should be general-
ized to all areas of education, including even the playground.

To see the limitations of that view, we must question the
assumption that computers and people have similar thought pro-
cesses, hence that learning a skill amounts to mastering a step-
by-step procedure. Here we fly in the face of a tradition that
seems to be based on solid evidence. But the philosophers and
psychologists who allegedly possess that evidence have accu-
rately described skills only at the moment when those skills be-
came conspicuous. They have yet to notice that we only become
aware of our skills when things are not going smoothly or when
someone performing an experiment has given us a task in which
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we have no prior experience or skill. Then we are indeed depen-
dent on analysis. However, if we let the phenomena of everyday,
successful, skilled activity show itself as it is in itself, if we de-
scribe what the tradition has passed over, we find we have to
abandon the view that a beginner starts with specific cases and,
as he becomes more proficient, abstracts and interiorizes more
and more sophisticated rules, or, as Papert puts it, that experi-
ence in particular situations is necessary only to improve the
rules, “to trap and eliminate bugs.”% Skill acquisition moves
in just the opposite direction: from abstract rules to particular
cases.

Anyone beginning to acquire a skill in a new domain needs
to learn to recognize basic features and rules for combining
them and acting on them. So, for example, for learning addition
algorithms Papert’s model works perfectly: “Learning algo-
rithms can be seen as a process of making, using, and fixing
programs. When one adds multidigit numbers one is in fact act-
ing as a computer.”%7

Moreover, there are advantages in getting the child to think
about his own reasoning on the model of the computer:

Trouble with adding is not seen as symptomatic of something else;
it is trouble with the procedure of adding. For the computerist
the procedure and the ways it can go wrong are fully as interesting
and as conceptual as anything else. Moreover, what went wrong,
namely the bugs, are not seen as mistakes to be avoided like the
plague, but as an intrinsic part of the learning process.3®

Another useful concept for educating beginners is the notion
of a micro-world. The fact that the micro-world failed as a step
toward modeling real-world understanding does not prevent it
from being salvaged as a simplified environment in which the
beginner can more easily pick out the features he needs to recog-
nize, and in which the procedures he is learning apply automati-
cally. “The use of the micro-worlds provides a model of a learning
theory in which active learning consists of exploration by the
learner of a micro-world sufficiently bounded and transparent
for constructive exploration and yet sufficiently rich for signifi-
cant discovery.”3?

All this is very persuasive. Still, one must remain critical.
At the advanced-beginner stage the micro-world idea can al-
ready begin to get in the way of learning. If what the learner
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was acquiring were more and more sophisticated features and
rules, then one could neglect situational elements and gradually
complicate the micro-world by adding more features as the child
developed greater skill. But if, as our skill model suggests, the
learner is acquiring a repertoire of situational elements and of
whole, real-world situations, then keeping the learner in a micro-
world can actually be counterproductive. For example, it might
help a beginner learn some basic ideas of chess if one simplified
the rules—by making all exchanges forced as in checkers, let’s
say. One could still pick out and name features, such as center
control and knight forks, but situational elements, such as unbal-
anced pawn structure, would be different, so that remembering
prototypical examples of them would be useless in a real game.
Likewise, in playing such games over and over one would not
be acquiring a stock of prototypical whole real chess situations
with their associated successful responses. Or, to take another
illustrative example of a skill, driving in a parking lot might
help a beginning driver learn to shift, but finally no simplified
micro-world can substitute for driving on roads with other cars
and pedestrians all around, since memories of concrete events
and situations are what is required for expertise.

Although the micro-world approach may well be a dead end
even for advanced beginners, the idea of the student as tutor
can still be helpful. Since the student needs to learn to recognize
situational elements, he or she might well be led to find them
by acting as teacher or coach. Nevertheless, while one can name
situational elements and recite ways to use them, one cannot
program them. As we saw in discussing the world of the ad-
vanced beginner, situational elements like engine sound and
unbalanced pawn structure can be recognized by similarity to
prototypes, but no one has any idea how they could be decom-
posed into the sort of objective features required by a computer
program.

Now we can see why naming elements and verbalizing proce-
dures are sometimes but not always helpful. We can agree with
Papert that “a fundamental problem for the theory of mathemat-
ical education is to identify and name the concepts needed to
enable the beginner to discuss his mathematical thinking in a
clear articulate way. And when we know such concepts we may
want to seek out (or invent!) areas of mathematical work which
exemplify these concepts particularly well.”+® Even the ad-
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vanced beginner, when passing on to competence, still has some
use for analysis and verbalization. One can learn the names of
specific strategies and the features and situational elements sug-
gesting which strategy to apply. Using programming, if only
as a metaphor, might help develop that analytic planning capac-
ity.

Papert’s proposals are appropriate up to this point. But he

wants to generalize the need for verbalization to all levels of
skill:

I believe in articulate discussion (in monologue or dialogue) of how
one solves problems, of why one goofed that one, of what gaps or
deformations exist in one’s knowledge and of what could be done
about it. I shall defend this belief against two quite distinct objec-
tions. One objection says: “it’s impossible to verbalize; problems
are solved by intuitive acts of insight and these cannot be articu-
lated.” The other objection says: “it’s bad to verbalize; remember
the centipede who was paralyzed when the toad asked which leg
came after which.”4!

Being told that whatever you know can be verbalized or,
as Taylor put it, you can’t teach what you don’t understand
and you don’t understand something unless you can program
it, may remind you of a time in school when you knew something
perfectly well but your teacher claimed you didn’t know it be-
cause you couldn’t explain how you got your answer. Of course,
sometimes the teacher was right. If you had not yet had experi-
ence with a certain type of problem, getting the right answer
would have been just a lucky guess, but if you had had considera-
ble experience in a certain type of situation and had a good
record for getting the right answer, it was infuriating to be told
that because you couldn’t explain how you got your answer you
didn’t understand. You no doubt felt that such intuition should
be praised, not ridiculed.

In our rationalistic tradition even Nobel scientists face that
sort of problem. The physicist Richard Feynman, for example,
had trouble getting his views accepted by the scientific commu-
nity because he couldn’t explain how he got his answers. Free-
man Dyson, a fellow physicist who took on the role of Feynman’s
interpreter, writes:

The reason Dick’s physics was so hard for the ordinary physicists
to grasp was that he did not use equations. . . . He had a physical
picture of the way things happen, and the picture gave him the
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solutions directly with a minimum of calculation. It was no wonder
that people who had spent their lives solving equations were baflled
by him. Their minds were analytical; his was pictorial.+?

Papert’s cognitivist perspective has no place for such nonanalyti-
cal understanding.

Our model explains why, in moving to proficiency, where
the learner must see whole patterns and remember them, analy-
sis and verbalization no longer help but actually get in the way.
One could name issues and whole patterns; there is nothing
mystical or ineffable about them. But since there are probably
more subtly differentiated patterns in the mind of, say, a chess
grandmaster than we have words in our whole vocabulary, point-
ing them out and naming them is a hopeless task. More impor-
tant, since pattern storage and retrieval take place without
conscious awareness, there is no point in having names for the
patterns learned. To see this it helps to remember that in linguis-
tics we have a huge vocabulary for describing grammar, tense,
aspect, conjugation, declension, and so on, and that being able
to pick out such features and rules does seem to help a beginner
learn a second language. For the beginner it might well be help-
ful to program a computer to produce sentences in a simplified
grammar of the language being learned. But, as anyone who
has learned a foreign language knows, such knowledge of vocab-
ulary and rules does not create proficiency. One needs experi-
ence speaking, reading, and listening. Only then can one finally
stop thinking of rules and speak flexibly and fluently—even some-
times breaking the rules—in a wide variety of situations.

Thinking of oneself as a computer acquiring and naming fea-
tures and procedures might well accelerate the passage from
beginner to advanced beginner, and it can still be a useful meta-
phor in passing from advanced beginner to competence. But
it follows from our model of skill acquisition that thinking like
a computer will retard passage to the higher levels of proficiency
and expertise. Since analytic, verbalized thinking is counterpro-
ductive at those higher stages, there are solid arguments that
the computer running LOGO can be a dangerous tutee.

The Risks of the Machine View of Mind

The debate concerning the benefits and risks of the use of the
computer as tutor or tutee can and, given the pressure of time,
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must be settled independently of the question of whether at
some deep level the mind operates according to rules. For educa-
tion the crucial question is not whether skills are tacit theories,
as Leibniz, Piaget, Polanyi, and Papert claim—and we doubt—
but whether it facilitates learning to think of skills that way.

Our contention is that whether or not there is a tacit theory
underlying expertise, it is counterproductive to base an educa-
tional program on such an idea. Even if there are rules underly-
ing expertise, the rules to which the expert has access are not
the rules that generate his expertise, and so learning and acting
on the rules the expert can formulate will not improve perfor-
mance. Moreover, trying to find rules or procedures in a domain
often stands in the way of learning even at the earliest stages.
True to our conviction that an example equals a thousand infer-
ences, we shall use illustrations, rather as parables, to make these
two points.

In the Air Force, instructor pilots teach beginning pilots how
to scan their instruments. The instructor pilots teach the rule
for instrument scanning that they themselves were taught and,
as far as they know, still use. At one point, however, Air Force
psychologists studied the eye movements of the instructors dur-
ing simulated flight and found, to everyone’s surprise, that the
instructor pilots were not following the rule they were
teaching.*3 In fact, as far as the psychologists could determine,
they were not following any rule at all. If one accepts our five-
stage model of skill acquisition, that should come as no surprise.
The instructors, after years of experience, had learned to scan
the instruments in flexible and situationally appropriate ways.

Now suppose that the instructor pilot’s instrument scanning
rule is put into a CAI program. The computer tutor now begins,
like the instructor pilots, by drilling the beginners in applying
the rule. Moreover, the computer tests the beginners by asking
them questions and following their eye movements to be sure
they have learned the rule and are applying it correctly. So
far so good. But eventually the beginner will be ready to make
the leap to situational understanding, achieving proficiency by
leaving behind any awareness of rules and, like the instructor
pilots who abandoned their rule without realizing it, responding
immediately to situations perceived as similar to those previously
encountered. At that point, since the process by which we recog-
nize similarity cannot be made explicit as rules, and since no
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one knows how to find any other rules, there is nothing more
for the computer tutor to teach. The proficient performer is
on his own.

If, however, one insists on extending the CAI method to
higher levels of skill acquisition based on its success in teaching
beginners, we get an educational horror story. The computer
tutor, like the sorcerer’s apprentice, continues to check the pro-
tocols and eye movements of the student pilot and forces him
to return to the rule whenever he starts to violate it. In a slightly
more elaborate nightmare, the computer has been programmed
with more and more sophisticated rules and features for the
student to learn. In either case the student is prevented by the
accuracy, relentlessness, and record-keeping powers of the com-
puter tutor from making the transition from rule-following, ana-
lytic competence to intuitive proficiency and expertise.

That is no mere bogeyman. Expert systems are actually being
developed to teach doctors the huge number of rules that expert
system builders have “extracted” from experts in the medical
domain. GUIDON is such a teaching system:

The GUIDON system developed by Clancey at Stanford exploits
the MYCIN knowledge base about meningitis and bacteremia to
teach both facts and problem-solving strategies. MYCIN’s 450 diag-
nostic rules were not modified, but were augmented by an addi-
tional 200 rules that included methods for guiding the dialogue
with the student, presenting diagnostic strategies, constructing a
student model, and responding to the student’s initiative.*4

One can only hope that someone has the sense to disconnect
the doctor from the system as soon as he or she has reached
the advanced beginner stage. Otherwise such CAI techniques
could become a disastrous educational practice, even in the un-
likely case that it turns out that cognitivism is correct and that
experts follow unconscious and inaccessible programs.

In most disciplines expertise is possible only if the tutor can
allow the student, at the appropriate stage, to quiet the conscious
analytic mind and act intuitively, whether the brain is a com-
puter with a program or not. In other fields one cannot even
begin to learn if one thinks of oneself as an information processor
extracting a rule that describes the structure of the domain.

This is no “flimsy” objection but the conclusion of psychologi-
cal experiments performed by Lee Brooks and published in an
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important paper, “Nonanalytic Concept Formation and Memory
for Instances.”# Brooks constructed two complicated artificial
grammars and used a computer to generate two lists of strings
of letters—one from each grammar. He then divided his subjects
into two groups. The first was shown the list generated by gram-
mar A and the list generated by grammar B. These subjects
were given the task of abstracting the two sets of rules from
the two sets of examples. The subjects in the second group were
given the same two lists accompanied by additional information
designed to prevent them from thinking that all the items on
a list fell into a single category.

Each group was then tested to see what it had learned. The
subjects in the first group had learned nothing since they were
unable to abstract the arbitrary and complex rules used in gener-
ating the grammatical strings. What was surprising was what
happened in the second group. These subjects were shown thirty
new strings of letters which fell into three categories: Ten of
these strings were generated by grammar A, ten by grammar
B, and ten by neither grammar.

Their job was to sort them into these three categories. Their initial
response was . . . giggles or irritation together with an emphatic
protestation that they didn’t know what they were doing. [Yet]
they were able to distinguish each of the three categories from
one another at a level well above chance.4¢

Brooks concludes that in “the contrast between deliberate,
verbal, analytic control processes and implicit, intuitive, nonana-
lytic processes . . . too loose a use of the word ‘rule’ has served
to submerge the likely fact that much of our knowledge is a
loose confederation of special cases in which our knowledge of
the general is often overridden by our knowledge of the particu-
lar. . . . Stressing the nonanalytic, instance-oriented strategy
could . . . under some circumstances allow the learner to deal
with more complicated problems than would an analytic
strategy.”’47

Brooks’s work, among other things, led Donald Broadbent
of Oxford University, one of the fathers of information processing
psychology, to reexamine his view that skills are based on infer-
ence rules. In assessing the implications of his own experiments
showing that subjects looking for rules do less well than subjects
simply remembering results, he reviews Brooks’s work and
notes:
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Brooks suggests a highly plausible theory. . . . [Subjects] can react
on the basis of similarity between the situation now present and
others met in the past. . . . Thus action based on matching the
current situation to similar ones from the past will give better than
chance performance.4®

Broadbent concludes:

Performance based on verbalizable knowledge, and that which se-
lects action by matching the situation to those in earlier experience,
may be alternative modes of performance each with its own
advantages.*®

The moral of Brooks’s and Broadbent’s work for the use of
the computer as tutee is obvious. Whatever the unconscious is
doing—whether the brain is abstracting rules or not—thinking
of oneself as a computer and therefore looking for rules can
prevent the brain from doing its job, and so can stand in the
way of learning.

In some areas at least, one must be especially careful not
to think of oneself as a computer and not to think of learning
as finding procedures, or one cannot even begin. It is ironic to
find Papert claiming to be in agreement with Timothy Gallwey
of Inner Tennis fame, a most articulate proponent of this point:

Gallwey encourages the learner to think of himself as made up of
two selves: an analytic, verbal self and a more holistic, intuitive
one. It is appropriate, he argues, that now one and now the other
of these two selves should be in control; in fact, an important part
of the learning process is teaching each “self” to know when to
take over and when to leave it to the other. . . . Gallwey’s strategy
is to help learners learn how to make the choice for themselves,
a perspective that is in line with the vision already suggested of
the child as epistemologist, where the child is encouraged to become
expert in recognizing and choosing among varying styles of
thought.50

Papert implies that Gallwey believes one can use either the
"analytic or the intuitive approach at all levels of learning,
whereas in truth Gallwey’s method consists in helping the
learner achieve mastery by preventing analytic thinking from
the very start. Our model does suggest that, sometimes at least,
the beginner should be encouraged to think like an epistemolo-
gist, but Gallwey’s whole strategy consists in avoiding the trap
of getting stuck in rational procedures, by bypassing the analytic
mind and passing directly to proficient performance.
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Papert and Gallwey represent two extreme approaches to
skill acquisition. Papert tries to create a learning environment
in which the learner is constantly faced with new problems and
needs to discover new rules; he treats the learner as a perpetual
beginner. Gallwey, on the other hand, would like to create a
learning environment in which there are no problems at all
and so never any need for analytic reflection. Our view is that
at any stage of learning, problems may arise that require rational
analytic thought, and the learner must discover ways to think
them through. That is the value of Papert’s computer model.
Nonetheless, skill in any domain is measured by the performer’s
ability to act appropriately in situations that might once have
been problems but are no longer problems and so do not require
analytic reflection. This is Gallwey’s insight. The risk of Gallwey’s
method is that it leaves the expert without the tools to solve
new problems, but the risk of Papert’s approach is far greater.
It would leave the learner a perpetual beginner by encouraging
dependence on rules and analysis, thereby blocking the acquisi-
tion of expertise.

GRANTING THAT computer literacy consists in knowing what
sorts of skills and what levels of skill can and should be taught
using computers, where should the literate educator stand on
the question? After one has separated the hopes and grant pro-
posals from the actual successes of such computer education
pioneers as Brown, Suppes, Papert, Piestrup, and Schwartz, and
after one has mapped their successes and failures upon a descrip-
tion of skill acquisition which predicts that they would occur
just where they have in fact occurred, one realizes where to
invest one’s money and time.

Computers are marvelous tools which, when used as elec-
tronic blackboards, interactive simulators, and conjecture tes-
ters, greatly improve sociality and intuition in the classroom.
Provided one does not narrow one’s goal to forcing the student
to think procedurally like a computerized problem-solver, there
is no limit to the levels of skill that imaginative new learning
environments may be able to foster. Computers are also useful
as rule-following, literal-minded tutees, as long as one limits one-
self to teaching elementary math and programming, as most
LOGO users now do.

But the outlook for the computer as tutor is less bright. If
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one accepts our skill model, one is forced to conclude that the
levels of skill appropriately taught using the computer are quite
limited. At the beginning level the computer can be useful for
drill and practice in subjects requiring nothing more than the
memorization of facts, rules, and procedures such as spelling
or subtraction. And in restricted areas, where trained compe-
tence, not educated expertise, is the goal, computers and interac-
tive media like videodisks may indeed prove useful. However,
one should not attempt to tutor any higher level of skill, for
that would require giving logic machines skills that have proved
to be beyond their capacities.

We have seen that the advocates of computers as tutors and
tutees think, like Socrates and Plato, that we cannot teach what
we do not understand and that we only understand what we
can formulate in the sorts of rules and procedures used by a
logic machine. If that were true, teachers could be gradually
replaced by computers. But teachers are no doubt aware, and
parents must become aware, that expertise in teaching does
not consist in knowing complicated rules about their discipline
and about coaching—what tips to give, when to keep silent,
when to intervene—although teachers may have learned such
rules in graduate school. What an expert teacher gains from
experience is not more facts about some field plus rules of coach-
ing of the sort he or she once explicitly followed as a beginner;
rather, the teacher learns intuitively and spontaneously to draw
on the commonsense knowledge and experience he or she shares
with the student in order to provide the tips and examples
needed by the advanced beginner. The teacher also learns how
to motivate the involved practice by which a student gains exper-
tise in any domain.



CHAPTER 6

MANAGERIAL ART AND
MANAGEMENT SCIENCE

The usefulness of decision analysis in making a wide variety of both
private and public decisions has now been established.

Ronald A. Howard
“An Assessment of Decision Analysis” (1980)

Look, I'll admit it. | was one of the guys teaching all the quantitative
methods with such vigor. | was part of the problem.

Robert H. Hayes

in “Overhauling America's

Business Management,”

The New York Times Magazine (1980)

AMERICAN MANAGEMENT has lost its worldwide preeminence.
Once seen as the geniuses behind America’s international power,
our corporate managers are now chastised for America’s stagnat-
ing productivity, aging and obsolete machinery, inferior but
more expensive products. Much heralded books such as In Search
of Excellence! and articles such as “Managing Our Way to Eco-
nomic Decline”? hold that the modern American manager’s
overdependence on analytic thought and quantitative analysis is
a principal cause of our current problems. As the anti-analytic
bandwagon has begun to roll, advocates of Zen Buddhism,
Jungian mysticism, and extrasensory perception have climbed
aboard, and the young student of management must now wonder
whether to head for Harvard or the Himalayas.

While analytic management was no doubt oversold in the
1950s and 1960s, when whiz kids with computerlike minds were
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controlling everything from General Motors to the Department
of Defense, we must not now turn our back on detached delibera-
tion and on tools such as mathematical modeling. We must inte-
grate those scientific methods and computational tools into our
more traditional, intuitive ways. We must, in short, establish
the proper place of analysis and computation in managerial deci-
sion-making.

By now, many chroniclers of good management practice have
noted that Japanese companies and some of America’s most re-
spected and successful companies as well are not heavy users
of the modern mathematical and computer tools of management
science.? Authorities generally do not delve into reasons why
analysis is not adopted, other than to argue that effort put into
mathematical modeling is expensive and time-consuming and
too often replaces, rather than augments, more critical endeav-
ors such as the cultivation of customers and the deepening of
worker involvement.4 This leaves open the possibility that what
might be needed beyond those suggested improvements is bet-
ter and more timely analytic methods, procedures capable of
including “soft” considerations that are not easily quantified and
that take into account the subjective knowledge of experienced
managers. Indeed, propounding this as just the tonic needed
to restore the sagging fortune of analytic management, a new
breed of management scientist, a sort of knowledge engineer
called a decision analyst, has put himself forward as savior of
calculative rationality.

A top manager, perhaps already disenchanted with conven-
tional quantitative methods, may suspect that this latest fad is
just more snake oil. But he might find himself hard pressed to
refute the assertion that by capturing expert knowledge in a
mathematical model and then processing it systematically, accu-
rately, objectively, and almost instantaneously—as only a com-
puter can—his decision-making can be improved and made
rational. Thus critics of formal models often are unable to justify
their skepticism to themselves and their peers. What is needed
is not further documentation that calculative analysis has failed
but reasons why it does not work. Our skill acquisition model
provides the explanation. An expert manager, deeply involved
in his job and intimately familiar with his company, intuitively
understands and decides, based on what has and has not worked
in the past. He no longer forms his decisions using formulas
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applied to the facts, as he did as a novice or even a competent
manager, and as is done by conventional mathematical models,
nor does he plan the future as in decision analysis.

Detached deliberation and intuition need not be viewed as
opposed alternatives, as is all too often the case in simplistic
treatments. When properly used, they are productive team-
mates. Soon we shall describe a kind of deliberation that smart,
intuitive managers already certainly use: deliberation about their
intuitive, experienced-based, holistic understanding.

Recognizing the difference between intuitive, experience-
based understanding and analytic reasoning helps us understand
why Japanese firms are often better managed than American
ones. Japanese workers employed by large corporations typically
stay with one company throughout their career, rise through
the ranks, and, should they reach the top levels of management,
are thoroughly familiar with all aspects of the company they
manage. American managers, on the other hand, frequently
change jobs in order to hasten their climb up the corporate
ladder. What does the typical American manager bring with
him when he changes companies? Not, unfortunately, much of
the know-how he presumably acquired on the basis of concrete
experience in his previous job. No two companies are exactly
alike in personnel, problems, or philosophy. The manager’s expe-
riences in his old job must be translated into facts and general
principles before they can be brought to bear in his new position.
And, as we have seen, when holistic concrete experience is de-
composed and transformed into rules, a great deal of its content
is lost. As the transplanted manager consciously applies learned
managerial techniques in his new job, he will be regressing to
the managerial style of a competent executive, at best. Yet to
some degree he has no choice; being unfamiliar with the specific
characteristics of his new company, he is compelled to fall back
on more abstract knowledge.

Naturally there are benefits associated with bringing in new
blood. Traditional and perhaps nonproductive lines of authority
can be broken, narrow-minded perspectives can be widened,
and new energy can be injected into tired organizations. A newly
hired manager can, with time, once more acquire sufficient con-
crete experience to become an intuitive expert. The period of
adjustment depends, of course, on the similarity between situa-
tions. A high-ranking executive of an automobile company de-
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fecting to a competitor will still know his industry well and will
probably even have some sense of the philosophy, style, tradi-
tion, and personnel of his new employer. But, at the other ex-
treme, a retired military commander of proven administrative
ability taking over the directorship of an art museum would
not only have to start almost from scratch but might actually
have his adaptation impeded by concrete memories of what
worked and didn’t work in the army.

To judge from recent American business experience, the costs
of job-hopping seem to outweigh the benefits. Businesses with
job-hopping executives suffer from management by abstract
principle, while a few excellently managed American companies
and many Japanese corporations thrive on involved manage-
ment exhibiting deep understanding based on concrete experi-
ence.

A particularly pernicious example of relying on formulas and
principles instead of real-life business experience is the current
practice of making capital investment decisions through the use
of discounted cash flow calculations. If capital investment is post-
poned for a year it is, in a certain sense, less costly than if made
now. Money not spent now can be placed in a safe interest-
bearing or profit-making investment, producing sufficient money
for the capital expenditure, plus a surplus, a year in the future.
As a result, especially when interest rates are high and sales
low, capital investments should logically be postponed. This fiscal
logic (called discounted cash flow to signify that the importance
of money spent or earned in the distant future should be dis-
counted with respect to costs or profits now) has become the
dominant consideration in the scientific determination of capital
goods investment policy. Valid as that reasoning is, it recognizes
only one aspect of the very complex, competitive, uncertain
business picture. Short-sighted and overly conservative invest-
ment policies result.

While other considerations going beyond the purely financial
are sometimes factored into the investment decision calculations,
the scientific combination of factors by means of formulas may
well be one of the culprits behind our current business woes.
What is needed instead is good old-fashioned management by
know-how: the experience-gained, intuitive recognition of when
the time is right for courageous investment policies, and the
implementation of those policies without recourse to rationaliza-
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tion by formula. Such methods are reminiscent of the aggressive
management practices that made American industry great in
earlier times (and that today are more likely to be found in
Japanese management methods). One input into the intuitive
decision-making process might well be a discounted cash flow
calculation, but the outcome of that calculation should merely
be noted along with many other things and not implemented
automatically.

Some intuitive managers, wishing to appear scientific, have
found a way of using discounted cash flow methods while staying
true to their own sense of purpose. The interest rate used in
discounted cash flow formulas implicitly weights numerically
the future relative to the present. The higher the interest as-
sumed available in a safe investment, the stronger the bias
against investments that do not yield large immediate returns.
A high interest rate used in discounted cash flow calculations
heavily discounts long-term returns relative to quick ones, while
a low rate puts relatively more weight on the long-term returns.
Certain oil company executives, realizing that without explora-
tion and development of resources (a long-term investment) they
will soon be out of the oil business, use a very low interest rate
in evaluating long-term decisions, making all such investments
relatively attractive but making larger future returns more desir-
able than smaller ones. Those same companies, when considering
the acquisition of a new service station, use a high interest rate,
reflecting their belief that the sooner the return, the better.

When discounted cash flow is applied in this manner, the
critical choice of the interest rate becomes a matter of intuition
about the true significance of the investment for the long-range
health of the organization rather than a problem of predicting
actual bank interest payments in the future. Accordingly, what
passes for science is really managerial art. It seems a pity that
a subterfuge such as this is necessary. It wouldn’t be if managers
fully appreciated their five-stage development from detached
calculating novices to involved, intuitive experts.

A second modern scientific management technique has re-
cently been criticized by Thomas Peters, an author of In Search
of Excellence.® It is termed, often with reverence, long-range,
strategic, or corporate planning. Thinking ahead might seem
beyond reproach. But a comparison of what is involved in strate-
gic planning with the way we behave in everyday life when
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facing situations where the future is clearly important yields
vital differences. In daily life we do not stand back and con-
sciously plan ahead. Instead, intensely involved in the present,
we perform that action which experience has proved will work
out satisfactorily in the long run. Coordinated behavior is assured
through the medium of a unified style or what in business is
sometimes called a philosophy.

In athletic competition, for example, one exploits a weakness
without foreseeing exactly what the gain might be. Likewise,
when we start to speak a sentence we generally do not know
its conclusion, but experience shows that one will present itself
when needed. When driving we rarely think explicitly about
what might be beyond the next bend; we simply approach the
curve at what experience has shown to be a prudent speed allow-
ing safe adaptation to almost any contingency. The more skilled
we become, the more we live in the present, recognizing that
if we keep sensitive fingers on the pulse of current events and
respond well now, the future will take care of itself. There is
no reason why top management, in any but the most unusual
and unfamiliar situations, should behave differently from other
skilled individuals. For centuries managers coped with uncer-
tainty about the future without using computer models.

Well-managed companies establish a guiding philosophy,
which, accompanied by a vigilant assessment at all times of the
present situation, suggests various decisions having long-range
impacts. Flexibility and consistency are emphasized. It is inter-
esting that, according to Business Week, “neither Johnson and
Johnson, nor TRW, nor 3M—all regarded as forward thinking—
has anyone on board called a corporate planner.”¢ Strategic plan-
ning, which had its genesis at General Electric, has been aban-
doned there. The company’s planning department, now down
to eight people from thirty just four years ago, calls the concept
of formal strategic planning archaic.”

Deliberation in Management

Experienced intuitive managers do not attempt to understand
familiar problems and opportunities in purely analytic terms
using calculative rationality, but realize that detached delibera-
tion about the validity of intuitions will improve decision-mak-
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ing. Common as it is, little has been written about that conscious
deliberative buttressing of nonconscious intuitive understand-
ing, probably because detached deliberation is often incorrectly
seen as an alternative to intuition.

The same experience-based recognition of similarity that pro-
duces the expert’s intuitive understanding may also alert him
to differences between the current situation and similar previous
ones. Rarely will all salient features of a complex business situa-
tion exactly match those seen before. The intuitive decision-
maker would like somehow to change the situation or else adjust
his decision to take account of those perceived differences. He
wonders: How important are these differences? What should I
do about them?

A struggle commences, with two ways out. The decision-
maker can reduce his current understanding to facts about the
situation and then calculate, based on this decomposition, what
to do about the differences. Management scientists embrace that
calculative rationality, eagerly offering their mathematical and
computational assistance. But, as our skill model shows, to follow
that route is to degrade managerial understanding to competent
at best.

Wishing to resist that reductionist temptation, the wise man-
ager focuses upon the intuitively seen discrepancies between
the current situation and one with which he would feel com-
pletely comfortable. He hopes to find ways of changing the situa-
tion that will keep all intuitively desirable options open while
decreasing his uneasiness. That may not be possible if some dis-
turbing elements are beyond his control, for example, abnor-
mally high interest rates. If changing the situation is impossible,
focusing on disturbing differences can awaken a further intuitive
conceptualization of the situation, with its own associated deci-
sjon. Should that happen, the manager would invent new options
balancing the original intuitive decision and the newly conceived
one. Thus a choice can be made with deliberation, yet without
turning one’s back on intuitive, holistic understanding.

Even when an intuitive decision seems obvious, it may not
be right. Experts are fallible, and there are deliberative methods
for protecting against errors that result from being too deeply
enmeshed in a situation. When deeply involved, one views a
situation from one perspective. One sees certain elements as
salient, holds certain expectations, and makes decisions accord-
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ingly. With the passage of time, the perspective changes. A busi-
nessman content with the status quo, for example, may only
dimly perceive a potential problem. As the problem develops,
disturbing elements of the situation gain prominence; as those
elements change, the nature of the difficulty takes shape. Finally
the decision-maker clearly grasps the problem and knows what
must be done. His clear-sightedness is the result of a long chain
of events, each gradually modifying his understanding. If any
event in the chain had been interpreted slightly differently, sub-
sequent events would have been viewed differently also, and
a whole different chain of interpretations culminating in an en-
tirely different “obvious” decision might have resulted. For that
reason two experts, even though they share a common back-
ground, can come to very different conclusions.

Aware that his current clear perception may well be the result
of a chain of perspectives with one or more weak or questionable
links and so might harbor the dangers of tunnel vision, the wise
intuitive manager will attempt to dislodge his current under-
standing. He will do so by rethinking the chain of events that
led him to see things the way he does, and at each stage he
will intentionally focus upon elements not originally seen as im-
portant to see if there is an alternative intuitive interpretation.
Generally, of course, there isn’t, but sometimes that contem-
plative exercise will result in a reassessment of the current situa-
tion. Even if current understanding cannot be dislodged in this
way, the wise manager will ask trusted aides for their perceptions
of the situation and, should theirs differ from his own, will give
their views a sympathetic hearing. For that reason, no conscien-
tious manager wants to surround himself with “yes men.” Should
the process described above fail to undermine the manager’s
confidence in his own perceptions, the initially conceived deci-
sion can be implemented with increased assurance.

The management consultant, but not the management scien-
tist, can play an important role here. While the scientist would
seek facts and formulas about the problem, the consultant can
serve as a facilitator for the exchange of intuitive ideas. Further-
more, he can offer his own perspective on the situation and
recount relevant experiences from companies he has helped.

An intuitive manager will sometimes sense that nothing he
has tried or experienced in a particular type of situation has
turned out as well as he had hoped. Then he will talk to other
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experts to see if any of them have tried something different
that worked out well in a similar situation.

Sometimes, but not often, an intuitive decision-maker finds
himself torn between two equally compelling decisions. Presum-
ably that occurs when the current situation resembles two prior
experiences with differing associated decisions, and both come
to mind. We have already discussed the possible compromise
between those decisions, but sometimes they are incompatible.
For example, an executive may be torn between a decision to
act decisively or not to act at all, and a halfway measure may
clearly be worse than either. Only a better understanding of
the current situation can break the tie, so the decision-maker
will delay if possible and seek clarification. More reports and
data, within reason, cannot hurt, but much more important are
real-life stories meaningful to the manager. Much of an execu-
tive’s daily time, according to Henry Mintzberg’s careful obser-
vations of managerial behavior, is spent seeking just that.
Mintzberg observes that businessmen prefer concrete informa-
tion, even gossip, speculation, and hearsay, to the abstracted
summary information contained in routine reports flooding their
offices.® His perception has been confirmed by Peters.? If a man-
ager can afford the time, the decision will be put off until some-
thing is learned that leaves only one action intuitively
compelling.

Suppose a manager’s intuitive assessment of a situation still
remains unshaken. Should it be trusted? Not necessarily, for the
manager’s experience-based intuitive understanding may con-
ceivably depend on experience that is insufficient or no longer
relevant. The manager may then have to discount his own intu-
itions as based on too little evidence, particularly when impor-
tant matters must be decided. Or perhaps the manager will
conclude that, while he has considerable experience with similar
problems, events in the outside world have changed sufficiently
to render those experiences of doubtful worth. In energy-inten-
sive industries, for example, no amount of business experience
prior to the energy crisis of 1973 would justify responding intu-
itively after that event. If the intuitive manager has reason to
discount his expertise in a particular situation, he can fall back
on the rational calculative approach of management science and
anticipate at least a competent decision.

The modeling result, however, should be treated as just one
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more possibly relevant input bearing on the problem, and cer-
tainly not as its definitive solution. Since models represent novice
or, at best, competent understanding of unstructured problems,
unquestioned acceptance of the recommendations of a mathe-
matical model would degrade decision-making.

The kind of detached deliberative rationality that we have
been describing is quite different from the detached calculative
rationality of novice, advanced beginner, and competent man-
agers. Those three levels of skill are all characterized by the
conscious description of one’s situation in terms of isolable com-
ponent elements and by decisions arrived at by rule. The expert,
consciously deliberating rationally about a decision as described
above, is thinking about the process and product of his intuitive
understanding. There may even be experts at thinking about
their intuitive thinking, who would then have intuitions about
the validity of their intuitions. A good management consultant
is an expert facilitator of a manager’s deliberative rationality.
A good management scientist, on the other hand, attempts to
replace it.

We could go on exploring the rich subtleties of expert deliber-
ation, but we have already said enough to make our point clear.
The creators of artificial intelligence, expert systems, and man-
agement science models totally fail to recognize what experts
really think about. That is not surprising, since the kind of think-
ing we have been describing, while detached and rational, is
not calculative and cannot be captured in the features and rules
of information processing models.

Learning Business Expertise

If expert managers are expected to know their businesses inti-
mately, to be deeply involved in their companies’ problems and
opportunities, and to act largely on the basis of their prior con-
crete experiences, what does this tell us about the education
of such managers? This question raises an interesting issue con-
cerning our five-stage model of skill acquisition. Can one get
to stage five without first passing through the previous four?
The answer cannot be a categorical no, for at least in the
case of physical skills like bicycle riding one does not begin with
rule-based exploration but with trial-and-error learning. But in
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learning most skills, one studies, rather than learning by trial
and error, and therefore passes through the stages we have out-
lined. Bombarded by things to see, hear, and feel, we wouldn’t
know without instruction what was relevant to the skill being
learned and what should be regarded as inconsequential back-
ground. When a novice watches a master chess player, gymnast,
improvisational jazz pianist, or business manager, he doesn’t
know enough about what constitutes the meaningful elements
of the situation to imitate successfully. He must learn those ele-
ments by passing through the initial stages of skill acquisition.
Then he is ready to act on the basis of his own observation or
experience. So what should business schools teach?

Many of the important elements in business situations are
what we earlier called “situational”: They are learned by ad-
vanced beginners through examples and not by means of formal
definition in terms of context-free features. Such aspects must
be taught by means of illustrations. For example, various cases
of successful product positioning can be presented, as well as
examples of poor positioning. (Well-positioned products meet
an unfilled need in terms of price, quality, and other characteris-
tics.) Attempts at precise definition of situational aspects should
be avoided, because in the future such elements will be learned
from experience based only on examples, and because there
will always be situations where the definitions do not apply.
The future manager should be encouraged from the very start
to develop his innate similarity-recognition abilities, which will
ultimately be the key to his success.

Next, the importance of perspective, required in stage three
of skill acquisition, should be taught. That seems to be best done
by means of case studies, but not cases of the kind now used
in various business schools. Current cases too often present con-
text-free facts, each of which is assumed to be relevant, and
require a decision along with a justification in terms of those
facts. Well-constructed cases of the sort we advocate might be
called situational and should

1. Contain historical information about the company and
about the problematic situation

2. Establish a rich current context, including what is de-
scribed in the statement of the case as hearsay and gossip,
as well as information from current business magazines
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and newspapers and discussion of general economic condi-
tions

3. Include situational aspects as well as cold, hard facts

4. Contain much information of doubtful relevance

5. Encourage student involvement by referring to the deci-
sion-maker in the case description as “you,” e.g. “Your
company has just. . . . What would you do?”

Furthermore, and this is perhaps our most radical proposal:

6. Each case should be part of a sequence of cases concerning
the same hypothetical company. In some of the cases a
reasonable response might be to note a potential problem
area that should be watched, but to do nothing. After a
case has been discussed, the teacher should report to the
students what actually was or was not done and what hap-
pened as a result. Students should then be strongly encour-
aged to incorporate that knowledge in their analyses of
future cases concerning the same company.

Case discussion should focus on the choice of perspective as
much as on the decision flowing from it. No student’s perspective
should be summarily dismissed as wrong. Rather, interpretations
should be judged as more or less consistent with the described
situation. The student should be expected only to justify his per-
spective or suggested action by fitting it into a narrative based
on the previous experiences of the company, rather than to ex-
plain the logic behind his conclusion.

Conventional case studies now encourage a decomposed, ana-
lytic approach to problems, thereby establishing thinking habits
that may cause the student later to reach a plateau at the compe-
tent manager stage. Situational case studies, on the other hand,
establish habits of thought that, with concrete experience, will
facilitate a student’s transition from competent analytic manager
to intuitive expert. To encourage the student to use intuition,
cases should sometimes be discussed immediately after they are
presented, allowing no time for analysis and reasoning.

That is about as far as classroom education in decision-making
can go. If possible, the student should now be immersed in real
business situations and deliberations. His involvement would in-
crease if he were allowed to participate in discussions, and if
feasible he should track the situation until the results of actions
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become known. He should be encouraged to ask experts about
history, philosophy, and interpretation rather than for explana-
tions in terms of rules.

Next would come an apprenticeship during which the learner
would not only participate in major decisions but be responsible
for minor ones. Like the residency period of a doctor, the young
businessman, steeped in theory, would begin to acquire actual
situated experience.

Throughout the whole process, educators should stress that
the decompositions involved at each stage are only a step toward
a higher and more holistic understanding, and that true business
expertise is heavily dependent on concrete experience in real
situations.

Limits of Conventional Mathematical Models

During his early job experiences the manager will be subjected
to many temptations. One of them is the desire to explain—
that is, rationalize—all of his acts. Another is the urge to abstract
from experiences new and more subtle rules for making deci-
sions, rather than merely to remember the outcome so he can
recognize and make the correct response to similar situations
in the future. A third temptation concerns us here, pressure
to rely on “scientific decision-making.”

To understand what the mathematical models of manage-
ment science can and cannot offer, we shall first review briefly
the history of the field. Unlike the case of artificial intelligence,
in which grandiose initial expectations have, under the weight
of repeated failures, gradually contracted into modest proposals
for narrowly focused expert systems, management science
started with humble aims and has gradually expanded its preten-
sions. Calling their field “operations research” when it began
during World War II, mathematicians attempted to describe
in quantitative terms such logistical problems as the optimal
provision of supplies and such tactical problems as the optimal
way to hunt for enemy submarines. After the war many of the
theoretical mathematicians conscripted into that practical effort
continued to be interested in the modeling of real-world phe-
nomena. Their attention turned to problems of industrial pro-
duction and distribution. Armed with the newly developed
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digital computer, they attacked questions like the sequencing
of tasks on production lines, the timing of the replacement of
obsolete equipment, and the determination of inventory replace-
ment policies. Those were all fairly well-structured problems.
The choice of the facts relevant to the problem, the decisions
open to determination, the relationships describing how the de-
_cisions altered the situation, and the goal or criterion in terms
of which the desirability of outcomes should be measured all
needed little or no interpretation. Many of the problems proved
to be too difficult given current mathematical techniques or com-
puter power, but in the remaining cases mathematical models
produced useful results.

Flushed with their triumphs in solving the structured prob-
lems typically faced by industrial foremen, management scien-
tists then turned their attention to the policy-level problems
confronted by business executives. Marketing, product diversifi-
cation, resource allocation, and other entrepreneurial decisions
became the target of mathematical modelers. Those problems
were all unstructured, but management scientists presumed that
experienced managers could provide the structuring necessary
for modeling. With only a novice’s knowledge of the problem
areas they were addressing, problem description in terms of
isolable elements, relationships among those elements, and ex-
plicit criteria for decision seemed to management scientists the
obvious strategy. What was thereby overlooked, of course, was
the extent to which know-how, based upon concrete experience,
replaces that kind of decomposed understanding as a manager
acquires expertise in his job.

More recently mathematical modelers have offered their
wares to the public sector, claiming to be able to model various
governmental policy problems. Those problems are character-
ized by all of the difficulties of unstructured business managerial
problems plus the additional difficulty of specifying an accepta-
ble criterion for comparison of policies. The goals of one segment
of society are generally at variance with those of others, the
present must be balanced against the future, and considerations
of political expediency as well as equity enter the picture.!°

We shall now treat in detail each of the steps involved in
creating management-science mathematical models and the way
in which intuitive know-how is replaced at each stage by isolable
facts and figures. When you see how this works you will under-
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stand why mathematical modelers are out of their depth dealing
with problems faced by business executives and government
policy-makers.

If a single, perhaps very complex, decision is to be studied, the
management scientist constructs his model by first identi-
fying important facts (often called state variables) about the
problem, then identifying what is under the control of the de-
cision-maker (decision or control variables). Next, since not all
decisions are possible in all situations, the modeler identifies
constraints that limit the admissible decisions when the state
variables are known. Finally, he specifies a criterion, expressed
by a numerical index of merit to be assigned to each admissible
decision. Mathematics, usually implemented on a digital com-
puter, then determines the admissible decision that has associ-
ated with it the best possible index of merit.

For example, consider the simplest sort of structured one-
item and one-time-period inventory control problem. The inven-
tory on hand constitutes the only state variable, the additional
inventory to be procured is the single decision variable, the
available warehouse capacity may constrain the sum of inventory
on hand and that added through ordering, and the criterion
to be minimized is the expected sum of the ordering and storage
costs, plus the shortage cost should demand exceed the supply
on hand.

Somewhat more complex models are required in dynamic
situations where decisions affect not only the present but the
future as well. Since the first decision influences the future, the
subsequent situations must be modeled along with the present.
The automobile replacement problem is of this dynamic type.
If only the costs and benefits in the current year were considered,
rarely would it pay to replace your car. But the purchase of a
new car decreases upkeep cost in the future, and if those savings
are to be calculated, a dynamic planning model must be con-
structed. For dynamic models, formulas must be provided that
describe the way in which current decisions determine future
values of the state variables (called dynamic equations), so that
decisions both in the present and in the future will together
optimize an index of merit throughout the entire duration of
the process.

To return to our simple inventory problem, suppose that de-
mand for the product being stored is expected to occur during
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each week for the next fifty-two weeks and that weekly procure-
ment decisions must be made after noting the inventory on
hand at the start of the week. The dynamic equation in this
case relates the state variable (inventory level) at the end of a
week to three quantities: inventory level at the beginning of
the week, the quantity procured during the week, and the de-
mand incurred during the week. Expressed in words, the inven-
tory balance equation states: Inventory at week’s end equals
inventory at its beginning plus the amount procured during the
week minus the demand incurred during the week. The criterion
is the expected sum of ordering, storage, and shortage costs for
the duration of the process. As we have said, inventory problems
are structured, meaning that the choice of state, decision, con-
straint, dynamic equation, and criterion is fairly obvious and
requires little or no judgment. The inventory balance equation
above is beyond dispute.

In sum, management science models, since they almost invari-
ably concern the future as well as the present, require the deter-
mination of what will constitute state variables, decision
variables, constraints, dynamic equations, and criterion.

Mathematical models used for purposes of prediction but not
control—for example, in economic forecasting—require the
same modeling process, except that no decision variables or con-
straints are present and no criterion is needed. The two key
decisions in constructing a forecasting model for an unstructured
situation are the choices of what will constitute the state variables
and of what to use as the dynamic equations, which predict
the values of state variables in the future as functions of their
values in the present. For example, government forecasting
models used to predict inflation include various arbitrarily de-
fined economic indices as state variables. They may include vari-
ables describing international political events (such as military
buildups and trade agreements), labor’s inclination to strike, and
consumers’ propensity to spend. All forecasting models must
contain formulas that explicitly relate future values of those vari-
ables to current ones. The equations concerning inflation are
not objectively verifiable like the relationships in physics and
chemistry, or the inventory balance equation of our earlier exam-
ple, but must be invented, presumably by experts on such mat-
ters. The predictions by these models will be no more reliable
than the weakest of their component equations and no more
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wise than the choice of which indices and events to include
and which to exclude. No amount of computation can begin
to compensate for a poor choice of variables or relationships
among the variables. Unfortunately, as we shall see in the sec-
tions to follow on state variables and dynamic equations, expert
forecasters are not experts at supplying good information to
modelers.

We’ll examine each of the elements of a dynamic optimization
model to see to what extent the model captures a manager’s
understanding. Assuming an unstructured situation and an avail-
able expert, we ask to what extent a model can capture the
expert’s understanding. We’ll then turn our attention to decision
analysis, which decomposes the problem not into state variables,
decision variables, constraints, dynamic equations, and criterion,
but into alternating decisions and chance events, and prefer-
ences among alternative holistic outcomes. This new method
of modeling, the subject of a recent enthusiastic article in the
Harvard Business Review,!! avoids certain pitfalls of conven-
tional mathematical modeling. Unfortunately, this attempt at
circumventing some of the shortcomings of conventional model-
ing runs into subtle and unsuspected difficulties of its own.

State Variables

The typical state variables in mathematical models are context-
free facts—quantities such as production levels, demands, dollar
costs, and interest rates, which are recognizable by novices with-
out benefit of concrete experience. Sophisticated models also
include quantities describing the current situation that depend
on context and are recognized on the basis of a businessman’s
concrete experience, such as measures of economic climate and
the probabilities of specified economic or political events. Those
are aspects used by advanced beginners. Thus, should an expert
act as consultant in the construction of a model, he must unfortu-
nately regress to the detached analytic viewpoint of the beginner
in order to answer questions about what context-free and situa-
tional elements to include and what values to assign to those
elements. His decision-making know-how is of no avail. If the
model is dynamic, future events hypothesized in the model may
change the decision-maker’s perspective, and his assessment of



Managerial Art and Management Science 175

what state variables describing a future situation to include in
the model may change as a result. So to build a model that
reflects changing perspectives, a decision-maker has to imagine
not only the new situations that might occur in the future but
also their effects. Such hypothetical reasoning about future per-
spectives is typical of the competent decision-maker. Current
management science models do not address the issue of evolving
perspectives at all. Thus models, while they might in principle
capture competent understanding, actually represent at best the
understanding of an advanced beginner.

Decision Variables

Decisions to be included in a model must be explicitly identified.
Given the current situation, an expert decision-maker can proba-
bly provide a set of alternative decisions, although the intuitive
expert does not generally think in those terms, seeing only those
decisions that need to be made without explicitly examining
all possible alternatives. If the model is dynamic, the set of deci-
sions to be evaluated and compared at future times must also
be stipulated. Since models do not currently account for evolving
perspectives, that set is generally taken to be the same as the
present set, thereby possibly ignoring what a decision-maker
would intuitively choose to do if immersed in some actual future
situation.

Constraints

The expert may intuitively know what are acceptable and unac-
ceptable whole concrete situations. But to provide constraints
for mathematical models the knowledge must be rationalized
in the form of acceptable and unacceptable combinations of
state variables and decisions. Here again, any expert contributing
to the construction of a model will be forced to regress to think-
ing like an advanced beginner to furnish the sort of information
required.

Dynamic Equations

An expert may have a strong experience-based, intuitive sense
that if he takes action A, result B will follow. A model, however,
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requires an explicit rule, expressed in terms of its state and deci-
sion variables, that replicates the expectation. An expert knows
no such rule. If the prediction involves the implications of actions
taken in the present, an ad hoc rule may be constructed to fit
various of the expert’s explicitly stated intuitive expectations.
But since the usual intention of a model is to extrapolate knowl-
edge beyond those cases that a decision-maker can explicitly
handle, it must remain an act of faith that the rule accurately
reflects the decision-maker’s intuitions in all cases. If the deci-
sion-maker’s intuitions are experience-based, not rule-based,
there is no reason to anticipate the universality of any rule.
Worse yet, dynamic equations must also predict the outcomes
of actions taken in hypothetical future situations with the future
described only in terms of the values of state variables. In such
cases no expert intuition is available, since intuition presupposes
involvement in real situations. :

Criterion

Conventional optimization models frequently use weights, or
tradeoffs, to combine their isolated elements into a single quanti-
tative index of merit. If not, some other means of combination
must be found. But experienced decision-makers do not think
in those decomposed terms, at least until after they have intui-
tively chosen their decision and are attempting to rationalize
it. Consequently, the model’s measures of relative importance
of various aspects of a situation must be contrived without re-
course to the concrete lessons of experience.

Many public policy decisions involve financial costs, increase
or reduction of risks to life and health, and changes in the quality
of life, all differing for different groups of citizens, as well as
effects upon both the current generation and future ones. For
a decision to be assigned an index of merit, all of those impacts
must be rendered commensurate and combined. The most com-
mon unit of measurement is dollars, meaning that lives them-
selves as well as the quality of life must be assigned dollar values,
with either all citizens treated equally or with the value depend-
ing upon such factors as age, sex, and race. The future must
be explicitly valued with respect to the present. It hardly needs
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saying that nowhere is the inadequacy of models so evident as
in social policy.

IN SUMMARY, every step of the conventional mathematical mod-
eling process requires that the expert informants, whose exper-
tise is supposed to be captured in the model, provide the sort
of decomposed and decontextualized information that concerns
beginners but not true experts. Hence, to participate in the con-
struction of a model, an expert must regress to seeing the world
like an advanced beginner or, in some cases, a novice. If experts
fail to appreciate the extent and importance of their unrational-
ized know-how, they may not realize how seriously their own
understanding is being degraded; they may even be flattered
into believing that the model constructed on the basis of their
answers to the model builder’s questions captures and amplifies
their expertise. If so, and if they act on the basis of the model,
business and social decision-making will suffer.

Limits of the Decision Analysis Alternative

A relatively new mathematical technique called decision analysis
claims to capture the experienced manager’s understanding of
his problems more faithfully than the conventional modeling
approach. A decision analysis is conducted in three stages. At
stage one the analyst constructs a decision tree (for an example
see Figure 6-1) representing the problem. The tree comprises,
first, the enumeration of all initial decisions being considered
by the manager, then an enumeration of the most significant
chance events that might occur if each of the decisions were
taken, next an enumeration of responsive decisions open to man-
agement should each of these possible chance events occur, and
so on as far out into the future as desired.

We shall use a greatly oversimplified problem of the type
faced by oil wildcatters to illustrate this procedure. (One of the
earliest applications of decision analysis, a Harvard Business
School doctoral dissertation by C. Jackson Grayson, concerned
more realistic wildcatting situations.’? Grayson later became
Wage and Price Commission administrator under President
Nixon. After his Washington experience, Grayson noted in a
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1973 article in the Harvard Business Review that he had not
used quantitative modeling when making governmental deci-
sions and speculated upon the reasons.)!3 Assume that a wildcat-
ter owns a piece of property on which he may choose to sink
a well. Should he do so, assume that one of three results will
occur: a very productive well, a mediocre well, or a dry well.
The wildcatter also has the opportunity, at a small cost compared
with the cost of drilling, first to commission a seismic sampling.
If he avails himself of that, suppose that one of three possible
underground rock structures with differing implications for the
existence of oil will be identified: very encouraging, noncommit-
tal, and very discouraging. The wildcatter can then base his
drilling decision on the nature of the structure observed.

In this example, there are three possible initial decisions: drill,
don’t drill, or sample the structure. Drilling will result in one
of three chance events: very productive well, mediocre well,
or dry well. The result of not drilling is certain: The status quo
remains unchanged. Sampling has the three possible outcomes
enumerated above, and each can be followed by either the deci-
sion to drill or not to drill. If drilling is chosen after sampling,
the amount of oil discovered is a chance event with the same
three possible outcomes as for immediate drilling.

All of those options are diagramed in Figure 6-1, which looks
something like a tree or perhaps a bush. Decision points are
depicted by squares, chance events by circles, and the passage
of time corresponds to moving from the bottom toward the top
of the figure.

The second phase of a decision analysis requires the assign-
ment of probabilities to the various chance events. That is gener-
ally done by the decision-maker himself or by his designated
expert surrogate. Since, in general, those probabilities are not
objectively known quantities like those governing the outcomes
of tossing a coin, they are termed subjective probabilities. While
these probabilities may reflect personal biases, they are the biases
of the decision-maker himself, so the decision ultimately pro-
duced by the procedure will be the one that he, but perhaps
not someone with a different impression of the probabilities,
should find most desirable.

In our example, the wildcatter would be expected to provide
what he thought, prior to any sampling, the chances of each
of the three outcomes were: very productive well, mediocre
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Figure 6-1 Wildcatting Decision Tree.

well, and dry well. He must also assess the probabilities of a
seismic samplings being very encouraging, noncommital, or very
discouraging. Finally, he would furnish his assessment of the
chances of each of the three drilling outcomes in the case of
each of the three sampling results. Those assessments must be
consistent. There are various techniques for eliciting the proba-
bilities, but they need not concern us here.

At stage three of the formulation, the decision-maker must
state his preferences for each of the possible sequences of deci-
sions and events that he has foreseen. That preference is re-
vealed, for each particular sequence, by the decision-maker’s
answer to the question: At what probability p would it be a
matter of indifference to you between (1) the sure occurrence
of the particular sequence being assigned a preference and (2)
a comparison lottery in which with probability p the best possible
foreseen outcome occurs and with probability 1—p the worst
one results? The comparison lottery is called the basic reference
lottery and is always used as the basis for determining how much
the decision-maker likes any particular outcome sequence. The
p chosen by the decision-maker in answer to the question is
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called his utility of the particular sequence of events. Utility,
which measures strength of preference, is always between 0
and 1. A utility of 1 is assigned to the best possible foreseen
outcome, 0 to the worst, and the more the decision-maker likes
the outcome, the larger the utility.

After establishing utilities for each possible sequence of alter-
nating decisions and chance events, a computation determines
the initial decision that is best for the decision-maker, as well
as the decisions that he should make further down the line,
depending on what chance events occur.

How well does such a model capture a manager’s experience-
based understanding? Let us examine, in order, each step of
the modeling procedure.

The Enumeration of Possible Decisions
in the Construction of a Decision Tree

In a decision analysis, the decision-maker is asked to provide
plausible future decisions that he would consider if he were to
find himself in a situation described by the sequence of decisions
and chance events leading up to it. In a real-world situation,
decisions based on prior experience intuitively present them-
selves to the mind of the involved decision-maker. The abstract
and skeletal nature of a possible future condition in a decision
analysis, however, forces the decision-maker to reason out plausi-
ble decisions rather than invoke experience. But that puts him
in a situation analogous to that of an experienced driver who
is capable of almost automatic response to a wide variety of
real situations but is unable accurately to reason out how he
would respond in a hypothetical situation skeletally described
by information concerning velocity, visibility, and road condi-
tion. Even Rex Brown, the author!t and co-author!® of Harvard
Business Review articles extolling decision analysis, has recog-
nized this problem in his less well-known writings. He points
out that in real life decision-makers often do not choose any
of the acts they listed as plausible decisions in possible futures
when the analysis was performed, because subsequent events
have changed their perspective in a way that they did not
foresee.6
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The Enumeration of Chance Events in the
Construction of a Decision Tree

When making a decision, the intuitive decision-maker does not
explicitly think about all of the chance events that might occur,
either in the present or in the future. He has come to realize
from experience that there is no way such a list could possibly
be complete. Having been the victim of unexpected events,
he has learned to choose decisions that will work out in almost
any case, even cases not explicitly foreseen. Of course, although
decision analysis requires that chance events be made explicit,
one could include “the unexpected” as one of the outcome
events. But when constructing the decision tree, one must list
plausible alternative responses to chance events, and that cannot
be done for an event no better defined than “the unexpected.”
If “the unexpected” occurs at the end of a sequence in the
tree, no response is required, but a utility must be assigned to
the sequences ending in an “unexpected” way. Again, this is
impossible. If the possibility of the unexpected’s occurring is
ignored, not only is reality distorted but, as the decision analyst
Rex Brown has pointed out, the calculation of the optimal deci-
sion policy through the use of the tree will be unfairly biased
against decisions that introduce delays in order to await unex-
pected events.'?

Eliciting Subjective Probabilities Describing the Present

A decision analysis usually characterizes each possible future
situation as the current situation (as understood by the decision-
maker at the time the analysis is performed, without any attempt
at an explicit description) followed by a particular sequence of
hypothetical decisions and events. Hence one avoids the abstract
characterization in terms of state variables required in the
conventional management science model.

The current situation as experienced by a decision-maker gen-
erally includes uncertainties about the actual situation. The deci-
sion-maker contemplates actions that will reduce those
uncertainties. (In the case of the oil wildcatter, a seismic sampling
is an attempt to learn about the amount of oil) In that case
the actual situation is sometimes thought of as being one of sev-
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eral possible specified situations, with the decision-maker not
knowing for sure which one it is. Then, to model the process
of the decision-maker’s learning about reality, probabilities,
called prior probabilities, are subjectively assigned by the deci-
sion-maker to the various possible true situations at the time
the analysis is being performed. Those probabilities are adjusted,
generally by a formula called Bayes’s Law, on the basis of hypoth-
esized observed events. Should that be the approach taken in
our oil wildcatting example, the decision-maker would assign
prior probabilities to the three possible situations: very pro-
ductive well, mediocre well, and dry well.

If prior probabilities of the actual situation are used in the
analysis, they play the role of state variables, and the decision-
maker is asked to provide estimates of quantities about which
he normally never explicitly thinks as he makes intuitive deci-
sions. Here is an example that is perhaps closer to home than
oil wildcatting: If you were asked to provide the probability of
the presence of criminals at certain spots in New York’s Central
Park, you could not accurately do so, yet experience may have
taught you that you should not walk in the park at night.

Eliciting Subjective Probabilities of Chance Events

Chance events play the role in decision analysis of dynamic equa-
tions, specifying the future given the present. Hence providing
the probabilities of those events replaces the stipulation of the
equations. Since intuitive know-how transcends the beginner’s
calculation of decisions based on enumeration of possibilities and
consideration of their probabilities, it does not encourage learn-
ing from experience the probabilities of chance events. A New
Yorker need not know the frequency of crimes in Central Park
to know that it is sufficiently high for him to stay out.

We have conducted several decision analyses for real-world
planners in conjunction with courses we have taught on the
subject. While the planners will describe their problems with
involvement and emotion, they grow uneasy when probability
information is elicited. They draw back, contemplate, and usually
respond: “Well, I suppose the chances are . . .”
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Eliciting the Decision-Maker’s Utilities

In decision analysis, no tradeoff assessment is explicitly required
as it is in the construction of conventional criterion functions,
although a special decision analysis methodology, called multi-
attribute utility theory, involves generating such questionable
data. All that is really needed, in principle, is a utility assessment
of a “whole situation,” which is described as the present followed
by a particular hypothetical sequence of alternating decisions
and chance events. Here, however, we encounter the same diffi-
culty that we described in our earlier section on the enumeration
of possible decisions. A future so described, like the micro-worlds
suggested as learning tools by cognitivist educators, is necessarily
only a skeletal caricature of the real situations in which we live,
no matter how many events and decisions are explicitly included.
Consequently the decision-maker cannot draw upon the intui-
tive experience that only a real-world situation can evoke. He
is reduced to reasoning out how he believes he might feel about
a hypothetical future situation and thereby loses all contact with
the feelings that would be elicited by real situations.

Once we have reached this stage in performing decision anal-
yses, answers to our questions almost always begin, “Well, I guess
that. . .”. When we debrief clients after an analysis, they invari-
ably feel that the formulation of their problem as a tree of deci-
sions and events helped clarify their thinking, but they were
uncomfortable when furnishing probability information and
even more uneasy with quantifying their preferences for skele-
tally described situations.

How, then, can advocates of decision analysis like Professor
Ronald Howard at Stanford claim that its usefulness has been
established??® The simple answer is that they can’t. No systematic

‘studies of when or why decision analysis is helpful have ever
been undertaken. The psychologist Baruch Fischhoff has ad-
dressed this dearth of critical reflection,?® drawing an interesting
analogy between decision analysis and a better-known helping
profession, psychotherapy. He points out that psychologists an-
nually produce more than three thousand books, chapters, and
journal articles on assessment and still know very little about
the efficacy of their methods. Efforts of a similar magnitude are
needed before any claims for the established usefulness of deci-
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sion analysis should be taken seriously. The procedure doubtless
has a proper place, but it is premature to assert that one has
been established. When one is, we believe decision analysis will
be found useful on novel problems but inferior to human intu-
ition for problems with which experts have ample experience.

In general, all formal models of decision-making ask the ex-
pert questions which place him in a detached objective position
and so fail to tap his intuitive expertise. They suffer, just as does
conventional Al and expert systems engineering, from the im-
possibility of replacing involved knowing how with detached
knowing that. The same problem reappears in attempts to auto-
mate factories and offices.

The Place of Automation

The microcomputer-controlled industrial robots coming into use
today are vastly superior to the automatic machines of the previ-
ous generation, for with the power and storage capacities of
even microcomputers many new possibilities open to the indus-
trial engineer. For example, programs for performing a great
variety of tasks can be stored in a robot’s control computer.
That in turn allows great flexibility in the capabilities of a single
robot and rapid change in production procedures without repro-
gramming. The easy respecification of the robot’s programs is
a process certain to advance in the near future. GM, for example,
is working on a system called Roboteach, which will integrate
the programming of the shop floor computers with the central
machines within which design is done, and even automate the
process by which the robot’s programs are generated. Further,
computational power gives robots some measure of artificial in-
telligence: Systems already available endow robots with limited
vision and a modicum of tactile discrimination. Those senses
in turn permit response to small variations in the position of
the product under production or the location of tools used by
the robot to do its job. They also allow a computer to perform
some quality control functions during production.

While the problems of programming vision and touch are
intellectually very challenging and have inspired much research
at our universities, it is questionable whether in those areas much
progress can, or need, be made. In most cases there are no
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inherent reasons why each item cannot come down a production
line in exactly the same position or why tools to be used by a
robot cannot always lie in exactly the same place and position.
If vision is used, one should not seek human flexibility. In such
areas as microfabrication, where accuracy to within a minute
fraction of an inch is required, the vision system could pick out
predetermined, well-specified cues. If a robot arm in a produc-
tion line repeatedly grasps components of a given shape but
does not do so with the extreme accuracy required in the place-
ment of the component in an assembly, a computer-based vision
system could exactly locate a prespecified edge of the grasped
component and the computer could then guide the arm to an
accurate placement. The same holds for quality control. If certain
possible failures can be precisely characterized, a vision system
can look for those failures and the computer can be programmed
to take appropriate actions.

People, we have argued, learn to respond flexibly to a chang-
ing environment by experiencing and remembering thousands
of concrete cases and what to do in each. But robots use prespeci-
fied rules and principles, an approach that has shown itself inca-
pable of achieving human capacities. No program can deal
flexibly with components of arbitrary shapes or with unantici-
pated failures that a human being would easily detect. It seems
wiser, then, to abandon the goal of human flexibility and seek
engineering solutions consistent with the limited capacities of
present-generation robots. Better methods of standardization
can obviate the need for human flexibility, and they have the
advantage of working!

As for mobile robots, the situation is even less promising.
David Grossman, manager of automation research at IBM’s Tho-
mas J. Watson Research Center, has this to say about inflated
dreams of automation: ‘“There is this immense contrast between
some people’s notion of what will happen and the harsh realities
of what is actually here now. When you’re in the area of specula-
tive mobile robots—androids—you have left the field of what
might go wrong and have entered areas where nothing has gone
right yet.”20 The moral is that an intelligent, mobile robot has
no place in a factory, and although desperately desired by the
military, it is a completely unrealistic goal.?!

With respect to robots, one finds signs of a repetition of the
sad history of artificial intelligence. Expectations are initially too
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high, and while the research is challenging, little of practical
value results. Eventually more modest goals are accepted, and,
as with expert systems, useful aids are developed. It is interesting
that in both machine intelligence and robotics, the Japanese
seem to have the more realistic view. They virtually ignored
Al until the recent flowering of expert systems, and their robots,
while less exciting, have more commercial applications than
ours.

While with suitable standardization the repetitious, unskilled
aspects of production lines are being more and more successfully
automated, attempts to automate skilled labor have run into
problems. Tacit abilities, though long overlooked by students
of the labor process, have become more obvious as automation
has proceeded.??

Skilled machining is a good example of an occupation replete
with tacit skills. Due to those skills the field has long resisted
full automation. Despite nearly a century of engineering effort
since Frederick Taylor, there is still no guaranteed scientific
way of accounting for and fully anticipating variations in tool
wear, the machinability of various materials, actual machine per-
formance, or changing conditions. Yet such problems are readily
and routinely dealt with by machinists and machine operators,
relying on their skills and accumulated experience. Only if the
production process is rationalized to the point where irregulari-
ties are fully defined and contained, thus eliminating the need
for the invisible interventions that keep today’s factories going,
can total automation hope to work. Listen to a skilled operator
describe machine wear:

Cars are basically the same, but every car is different. . . . At first
when you’re learning, you just learn rules about driving. But as
you get to know how to drive, you get the feel for the car you're
driving—you know, things like how it feels at different speeds, how
well the brakes work, when it’s going to overheat, how to start it
when it’s cold . . . when you put [a skilled operator] on a new
machine she knows these machines so well, she’s got a feel for it,
she picks up right away what she’s got to do different on this new
machine than she was doing on the other one.?

It is into the complexity of the commonsense world that fac-
tory automation is introduced. With its introduction, of course,
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come concerted efforts at modernization and rationalization, but
they don’t always do the job. Discussing the shortcomings of
numerically controlled machine tools, the historian David Noble
quotes a skilled machinist at a large aerospace plant:

It’s hard to say whether the program is bad or not. I think it’s
more probably that the principle behind programming is somewhat
erroneous. If you were a time study engineer and went into a ma-
chine shop the two things you would observe the machinist doing
would be making calculations—he sits down, looks at a blueprint,
does the calculations—then putting the part on the machine—he’s
mostly positioning it, moving something from part A to part B,
or moving a cutting tool. If you look at it superficially, that’s what’s
involved in machining and you should be able to duplicate it. Com-
puters will do calculations. And you can fix up the machine tool
itself with servomotors and logic circuits. . . .

The problem is that there are a lot of subtle things in machining.
If you didn’t have any experience with woodworking, you could
watch somebody making a dovetail with a router and it looks real
simple. But when you try it, it turns out to be a bunch of splinters.2¢

If unskilled production line labor can be automated and
skilled labor such as machinists’ can’t, where does that leave
white-collar workers? That is no simple question. One has to
weigh limited advantages against limited costs. The advantages
are, of course, reliability, uniformity, and efficiency. The cost
is more subtle. Those who, like the white-collar labor union in
Sweden, have recognized a danger and are seeking legislation
against it have begun to call the problem “deskilling.” Deskilling
does not refer to the obvious and harmless fact that if we replace
some group of skilled operators with competent systems, soon
there will be no one left with that skill. No one bemoans the
loss of elevator operator skills resulting from the introduction
of automatic elevators. There was no high-level elevator exper-
tise, and automatic elevators are as good as or better than those
run by human beings. Deskilling refers to the loss of expertise
in an area where the computer is merely competent. A loan
company will be able to use a competent loan approval system
to enable beginners to make routine loans, whereas normally
beginners in the loan business will need years of experience
at dealing with whole situations and getting involved feedback
before those with the necessary talent and commitment can
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pass from novice to competent to expert. If, however, the begin-
ner is given immediate access to competence by answering a
list of queries from the system, the company will have to pay
for its easy entry into competence later when none of its staff
develop into experts who can deal with difficult cases.

The Swedes discovered that problem when they tried to com-
puterize their forest evaluation system. “[F]oresters began to
feel worried about the possibilities of maintaining the profes-
sional competence necessary to ensure a high quality of work.
One forester commented: ‘. . . New foresters never learn the
theoretical and practical foundations of forest evaluations.

. . 7’25 The same problem arose in the Swedish national insur-
ance adjusting office. The question becomes whether the em-
ployee should be an wunskilled servant answering the
preformulated questions of a competent system or whether the
computer should be a tool that does not try to replace the work-
er’s experience in making decisions but rather serves as a data
storage and calculation aid. In the first case the worker would
be able to deal almost immediately with simple, routine cases
but would lose or never develop the capacity to deal with difficult
and unusual ones. In the second case expertise would come more
slowly, but the resultant combination of expert and computer
would be able to deal with a much wider range of problems.

Society as a whole will have to decide in which areas it can
tolerate mere competence and in which areas it wishes to prac-
tice old-fashioned training and apprenticeship so as to preserve
old-fashioned expertise. In our judgment companies that allow
those who show talent to rise to the top the hard way—passing
through the stages from rule-using novice to intuitive expert—
will have an advantage over companies that rely heavily on com-
petent systems. Many companies will no doubt learn the hard
way, and those that set their sights too high, reaching beyond
the achievable to the pie-in-the-sky of total automation and me-
chanical expertise, will be forced to recognize reality. In the
end, when the expert systems euphoria fades, we shall see com-
petent systems finding restricted use in isolated areas. They are
useful in highly combinatorial areas in which there are no intu-
itive experts, such as VAX configuration, and in providing advice
and services to those in need of fast assistance who cannot obtain
the ministrations of human experts.
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Mind-over-Machine Approaches

It turns out, then, that at every level of business from the factory
floor to the board room, wherever skills are involved, formal
models fail to capture human expertise. Once that is recognized,
new possibilities open up for machine aids to the human mind.
Some management scientists themselves have recognized the
inadequacy of both the conventional and the decision analysis
models of the way a manager decides. They see that intuition
plays an important role, especially when managers face unstruc-
tured, but not wholly unfamiliar, problems. Decision support
systems (DSSs) represent the most recent attempt by those man-
agement scientists to save computer and mathematical model-
ing. Designers of those systems wisely acknowledge that
traditional management science stand-alone systems are too am-
bitious. They therefore develop systems that use computer-run
models to support, not replace, the activities of the intuitive
decision-maker. To offer timely advice to the busy executive
with pressing problems, DSSs are designed to be used easily
and directly by the decision-maker without the intervention of
either the professional model builder or computer programmers.
The models that the decision-maker includes in his DSS are
used to answer “what if”’ questions, describing what the future
will look like should certain decisions be made, or sometimes
determining which decisions will produce a desired future that
has been specified by the user.

When a decision-maker knows intuitively what he does and
does not like but finds it impossible to reduce his understanding
to rules and formulas, DSSs have considerable merit—but only
if the “what if” models incorporated in the computer system
are objectively valid at the time the program is being run and
if the decision-maker is fairly certain they will remain valid dur-
ing the forecast period of the model. Examples of such objective
descriptions are financial models that compute cash flows in the
future that would result from hypothetical current decisions such
as across-the-board pay increases, where all other inflows and
outflows are assumed known, or production-inventory models
that predict such things as inventory, raw materials, and over-
time levels as a function of production decisions. Such models
can be very complex, using historical probability data to predict
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demand and producing, by means of the simulation of a great
many randomly generated possible futures, probability distribu-
tions for future inventory, raw materials, and overtime levels.
These models are of value since even the most experienced
manager would probably lack good intuitions about the details
of such probability distributions.

If the models used to answer the “what if” questions are
not objectively obvious but must be produced by choosing arbi-
trarily what are to be considered the important state variables
and the relationships governing their evolution, all the problems
mentioned in our discussion of conventional management sci-
ence models and decision analysis raise their ugly heads. For
example, in marketing one might want to use a DSS to assess
the impacts of various hypothetical advertising campaigns and
then use one’s intuition to pick the most desirable proposal.
But no one really knows what variables enter into the public’s
initial response to a certain campaign or how those variables,
the initial public response, and further ads mold future behavior.
A model of this process would invent such variables as loyalty
to product, propensity to spend, and perceived need, and would
manufacture formulas for predicting how the variables would
change as a function of advertising. Such a model would repre-
sent novice or, at best, competent understanding, while the deci-
sion-maker, if experienced, may be able to intuit public response
much more reliably. In that case a DSS would degrade perfor-
mance. The intuitive decision would be supported by an analytic
foundation built on sand.

So DSSs must be used with extreme care. They have much
to offer when the future can accurately be predicted using a
model, but whether that future is acceptable can best be assessed
intuitively. They offer nothing but regressive thinking cloaked
in the illusion of scientific precision when the decomposed, ana-
lytic model used to answer “what if”’ questions represents an
understanding inferior to an expert’s holistic, involved intuitions.
DSS is neither a panacea nor merely a new buzz word invented
to save a discredited pseudoscientific approach. Just as traditional
management science has its proper place but risks extinction
if its pretenses continue to outstrip what it can produce, DSSs
will take their rightful place as limited, but useful, tools of man-
agement if, and only if, their designers understand and acknowl-
edge their limitations.
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WHAT, THEN, is the proper place of modeling? First, modeling
has proved a useful methodology for handling structured prob-
lems. Many of the production, distribution, and scheduling prob-
lems confronted by manufacturers are far too complex for good
intuitive decision-making but are sufficiently structured to be
described mathematically and solved by computers. Others can-
not be solved but can be modeled as part of decision support
systems, which can indeed support intuitive decision-making.
Likewise for queueing problems such as those faced by traffic
engineers. Problems involving the reliability of complex systems
are currently the subject of very useful mathematical modeling.

Second, modeling has been useful in coping with novel prob-
lems—ranging from nuclear reactor and MX missile siting to
hurricane seeding, large-scale reforestation, space mission plan-
ning, and the overhaul of the tax system—that, being new, fall
into no existing domains of expertise.26

Third, while a problem may not be novel, if the decision-
maker lacks sufficient experience with the type of problem, the
understanding supplied by a model may be superior to his own
model-like novice, advanced beginner, or competent under-
standing.

And last, certain problems that are unstructured, and about
which intuitive expertise exists, come up regularly at the opera-
tional levels of industry. Then computerized models, even if
they do not deal with the problems as well as an expert might
if he had the time, make possible the generation of decisions
that are at least acceptable, routine, fast, and economical. For
example, the computerized assignment of workers to jobs in
certain job-shop situations is rapid, reasonably efficient, and nor-
mally free of egregious error. Models of that sort are really exam-
ples of expert systems and, like expert systems, can be expected
to render competent, if not expert, decisions. The use of models
in such cases can be seen as a well-justified step toward routiniza-
tion, since it allows human decision-making expertise to be di-
rected toward more important problems.

As long as management scientists restrict their modeling ef-
forts to these four kinds of situations, the field is destined to
flourish. Management scientists might even go further and offer
the experienced expert facing a familiar unstructured situation
the opportunity of discovering what sheer computational power
can deduce from distinctly inferior understanding. But if their
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field is to maintain (or regain) its legitimacy, claims of the deci-
sional and predictive superiority of models must be assiduously
avoided. Here the expert must be made aware of his own
uniquely human capabilities and the corresponding deficiencies
of any formal model. In short, practitioners of management sci-
ence must acknowledge its inherent limitations and inform their
clients of them. The experienced manager can then use this
knowledge, and that provided by any models that he still chooses
to commission, as he sees fit.

Some computer system designers have already seen the limits
on the use of computers in managerial decision-making and have
moved in a different direction. They envision a role for comput-
ers in managerial practice other than the reproduction of human
capacities. For example, “coordinators” is the name given to a
new family of microcomputer tools developed by Fernando
Flores of Action Technologies, a San Francisco company, Terry
Winograd of Stanford University, and others. Their idea is that
managerial action is necessarily social and involves people inter-
acting verbally. Coordinators are designed to facilitate actions
of people working with each other. Using a coordinator, the
manager conducts his business by inquiring, instructing, order-
ing, questioning, requesting, proposing, inviting, promising,
and reporting. As he does, the coordinator automatically sends
his messages to others and elicits communication from others.
Of course, the computer has no understanding of the mes-
sages it is sending. Still, by keeping track of them the tool
facilitates the ongoing conversations that are essential to man-
agement.

Management information systems of some years back were
capable of regurgitating vast quantities of data but were difficult
to use and could not respond flexibly to a manager’s needs. Mod-
ern decision support systems are beginning to deal with those
shortcomings. Other new tools, such as coordinators, are based
on the recognition that decision-making is only one part of a
manager’s activities and are providing computer-based support
for the manager’s conversations and communications. Electronic
mail is coming into its own. Along with these developing tools,
the computer continues to provide file maintenance, word pro-
cessing, and accounting services. There are encouraging signs
that, after several false starts, computers are finally taking their
proper place as aids to managers’ intuitive minds.



CONCLUSION

PeoPLE THAT (Sic) THINK

People in every field will start asking themselves Al-type questions
about how they . . . model the knowledge in their field in the form
of an understanding system. . . . Al will change the questions people
ask and the methods they use.

Roger Schank
The Cognitive Computer (1984)

There are two equally dangerous extremes—to shut reason out and
to let nothing else in.

Pascal
Pensées (1670)

AN UNCRITICAL ARTIFICIAL INTELLIGENCE ENTHUSIAST entitled
her book on the subject Machines Who Think.' The intended
implication, of course, was that artificial intelligence had ad-
vanced to the point where computers could be programmed
to think like people. We have seen that computers do indeed
reason things out rather like inexperienced persons, but only
with greater human experience comes know-how—a far superior
holistic, intuitive way of approaching problems that cannot be
imitated by rule-following computers. The title of this chapter
calls attention to the dangers we face as the misunderstanding
of human skill that pervades the Al community spreads to society
as a whole.

The assumption of calculative rationality implies that society
can be improved by teaching children to think more analytically
and by requiring adults who wish to advise us to justity their
thoughts and actions in a supposedly rational manner. That is
an idea introduced at the beginning of Western thought by Soc-
rates and Plato. Why, if it has been with us for two thousand
years, is it suddenly so important that this idea be confronted
and corrected? At least three events have recently moved the
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rationalistic view of man out of the relatively harmless domain
of philosophy into the public arena. They are massive organiza-
tional changes in society, the tremendous impact on our lives
of modern science, and the invention of the high-speed digital
computer.

As recently as the last century, almost all businesses were
small or medium-size and were owned and operated by a single
entrepreneur. As a consequence a decision-maker needed to
justify his decisions to no one, and he could rely on the intuitive
understanding produced by his prior experience. Large bureau-
cratic structures change all that. Almost every employee has a
boss to whom he or she is responsible and who in turn is responsi-
ble to someone else. Even the president or chief executive officer
of a company is responsible to a board of directors, and members
of that board must convince their peers of decisions they support.
The choice is between justification by calculative rationality, that
is, inferences drawn from isolated, objective facts describing the
problematic situation, and consensus-based intuitive shared un-
derstanding, derived from concrete experiences, which defies
precise verbalization. In our Socratic tradition of precise defini-
tion and dialectical argumentation, when there is a choice be-
tween intuitive consensus and rationalistic argumentation the
latter wins out. Indeed, the hierarchical organization of decision-
making, the increasingly bureaucratic nature of society, and the
pervasiveness of economic metrics of success and failure encour-
age an excessive reliance on calculative rationality. Since wisdom
and judgment prove too hard to defend, information, decontex-
tualized facts, and contrived numerical certainties are substi-
tuted. If the model doesn’t work out right, change the
assumptions. If the spreadsheet brings unpleasant news, hide
unwarranted optimism in its formulas.

A similar story can be told about political life. The constant
presence of the mass media encourages political leaders to justify
every decision publicly with explicit reasons and statistics. Are
we winning the war? Look at the body count. Is the economy
healthy? Look at the GNP. With the demand for logical and
numerical justification, plausible sounding reasons are contrived,
and aggregations and statistics pass from useful guides to tokens
of false rationality and empty reassurance. In 1964, when Barry
Goldwater ran on the slogan “In your heart you know he’s right,”
the ridicule he received demonstrated the tenor of the times.
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From now on, political rhetoric would have to be glossed with
the legitimacy of calculative reason and statistics.?

With the explosions at Hiroshima and Nagasaki in 1945, the
power and potential of science burst upon the public. The scien-
tific method, characterized by the description and prediction
of observable phenomena through the use of formal models spec-
ifying the interactions of context-free elements, had yielded
power beyond all prior imagining. Then, a mere decade later,
the launching of Sputnik 1 by the Soviets again magnified the
prestige of science and scientists. True, scientific progress had
brought with it great problems, but it also brought the confi-
dence to face those problems and attack them with the same
detached, objective, testable procedures that had proved so suc-
cessful in explaining and controlling the physical world. Ideas
that had begun with the eighteenth-century Enlightenment and
gone on to transform production with the Industrial Revolution
and scientific management now became the common currency
of public discourse.

But merely aspiring to be rational about the organization
of society was not enough; the problems were tremendously
complex and beyond the calculative ability of the human brain.
The desire to rationalize society would have remained but a
dream were it not for the invention of the modern digital com-
puter. Science had produced a device that seemingly mirrored
and tremendously amplified human reason: a “brain” that could
cope with man’s problems. A truly rational society suddenly
seemed not only necessary and attractive, but possible. The orga-
nization of work, politics, medicine, and law, to name only a
few domains, has felt the impact of that aspiration. While much
has been made of the virtues of rational discussion drawing upon
a vast data base of instantaneously available information, too
little has been said of the dangers inherent in the trend.

The increasingly bureaucratic nature of society is heightening
the danger that in the future skill and expertise will be lost
through overreliance on rationality. Today, as always, individual
decision-makers understand and respond to their situation intu-
itively as described in the highest levels of our skill acquisition
model. When time permits, they further validate and fine-tune
their intuitions using what we have called deliberative rational-
ity. But when more than one person is involved in a decision,
the success of science and the availability of computers have
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led more and more toward that explicit, detached mode of prob-
lem description and alternative evaluation we have called calcu-
lative rationality.

All this sounds enlightened and progressive until one realizes
that genuine know-how, wisdom, and good judgment are sacri-
ficed in the process. Any attempt to be explicit and logical, alleg-
edly so that rational discussion can be directed toward the
relevance and validity of isolated elements used in the analysis,
limits “judgment” to the choice of those elements. But with
experience comes a decreasing concern with accurate assess-
ment of isolated elements, so in the area in which their response
is demanded experts have no expertise.

It is often desirable that experts defend their recommenda-
tions against other experts, or in some way be cross-examined
so that those affected can question their presuppositions. If this
is taken to mean that the expert must articulate his values, rules,
and factual assumptions, examining becomes a futile exercise
in rationalization in which expertise is forfeited and time is
wasted. But the alternative need not be the imposition of unques-
tioned authority. In Japan consensus seems to be reached
through discussion without reducing intuition to rationalization.
The cross-examination of competing experts in an intuitive cul-
ture might take the form of a conflict of interpretations in which
each expert is required to produce and defend a coherent narra-
tive which leads naturally to the acceptance of his point of view.

Demanding that its experts be able to explain how they do
their job can seriously penalize a rational culture like ours, in
competition with an intuitive culture like Japan’s. Indeed, intu-
ition, not Fifth Generation Expert Systems, may be Japan’s most
powerful secret. Take, for example, how the Japanese almost
took over the poultry industry. According to American Scientist:

With the depression at its lowest point in the early 1930s . . . one
of America’s big industries, that of producing eggs and raising chick-
ens, was faced with an important question: ‘What was to be done
with the Leghorn cockerel?’. . . Egg producers who bought chicks
wanted pullets only, and, as a result, hatcheries were always
swamped with unwanted cockerels. Some of the producers had
heard of the practice of chick sexing, developed in Japan. This
new technique of accurately determining the sex of the day-old
chick sounded like one of the mysteries of the Orient . . . Neverthe-
less, the hatcheries felt that, perhaps, here was the answer that
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would save their industry. Five young Japanese experts were sent
for.. . . They gave an amazing demonstration; the American inves-
tigators were astounded at the accuracy of the Japanese sexors.
One expert, Hikosoboro Yogo, during the demonstration, reached
a speed of 1,400 chicks an hour with an accuracy of 98 percent.?

Had the poultry farmers insisted on an explanation of how
the task was accomplished before they adopted the technique,
the industry would have been ruined. Even poultry men cannot
distinguish male from female organs in a day-old chick, so the
chicken sexors bypass the rule-following stage altogether. They
watch while an expert takes a box full of assorted chicks as they
come from the incubator, picks up the chicks, turns them back
side up, takes a quick look, and releases them into two other
boxes marked “pullets” and ‘“cockerels,” respectively. After
three months of apprenticeship trainees are able to begin sorting
on their own. With long experience, a chicken sexor does not
even have to look at the chicks’ sexual organs. “Yogo claimed
to be able to determine the sex of a chick immediately, even
before he looked at the genitals. This was hard to believe. But
by this time, Yogo had sexed three to four million chicks, and
he proved he could do it.”*

The secret is not in Japanese fingers but in a culture that
trusts intuition. Luckily, American poultry farmers were desper-
ate enough to care only for results, not reasons. Without insisting
on rules, but after handling several million chicks, Americans
showed that they too could perform fantastic feats. “Ben Salew-
ski, who learned to sex chickens in 1936 in Washington, claimed
that he could sense the sex of the chick by touch . . . and no
doubt there are other experts who use similar intuition in sexing.
He has developed an accuracy of 99.5 percent and cruises along
at the rate of 900 to 1,000 chicks per hour.”s

With that striking example in mind, let’s now examine the
inroads and associated costs of so-called rational decision-making.
Granted that formal analysis, if properly viewed as a useful tool,
has a place in the overall decision-making process, we shall be
critical, for such criticism is needed to balance today’s tendency
to assume, without evidence, the virtues of the rationalistic ap-
proach.

Under the auspices of the National Academy of Sciences, re-
nowned scientists are frequently impaneled to investigate and
then prepare advisory reports on matters of serious national
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concern. The reports, it is assumed, will tell administrators of
government agencies what scientists know about the situation
under study. For example, the introduction of a new insecticide
or the removal from use of a current one raises ecological, epide-
miological, and economic issues. Traditional science clearly bears
on at least the first two domains, and economics would like to
see itself in the same mold. Professor Howard Raiffa of the John
F. Kennedy School of Government at Harvard, who is a re-
spected mathematician and a leader in the modern rational deci-
sion-making movement, has described to us his experiences as
chairman of such National Academy of Sciences advisory panels.

While the methods of science are fairly rigorous and standard-
ized, Professor Raiffa says, the application of science is not. Each
scientist-consultant must decide subjectively what he or she is
going to study, what are the variables to be treated as relevant
and therefore scientifically controlled, and how to interpret the
results, since a study only assures one that if x is done in a
certain specific situation, y will occur. Consequently, the various
relevant studies in each subdomain of the problem area fre-
quently pull in different directions regarding overall recommen-
dations. As such, the conflicting studies are of little use to
administrative decision-makers. The question of which studies
are most relevant and safely generalizable is, unfortunately, no
longer a scientific matter. For example, no one knows for sure
what significance the number of cancers produced in rats by
very large doses of a particular product has for the long-term
health of human beings if the product is used in very small
quantities as an insecticide.

Professor Raiffa reports that as a panel chairman he speaks
informally with appropriate senior scientists of high repute and
no known bias about the proper interpretation of the superfi-
cially conflicting evidence. Since those people are wise, intuitive
synthesizers of evidence and good judges both of people and
of scientific practice, he often gets a good sense of the real signifi-
cance of the various experiments. But in the same breath those
informants will frequently warn him that their judgments are
strictly off the record and must not be included in the panel’s
report, since they are subjective, not verifiable, and therefore
unscientific. Needless to say, it is those judgments that really
could help in the decision-making process. If scientists could
acknowledge that deep understanding can never be completely
explained and objectively defended but nonetheless is valid,



People That (Sic) Think 199

wiser decisions that affect all of our lives might well result. Other-
wise, at every level of the process of synthesizing scientific stud-
ies into real understanding of the problem, expert wisdom is
‘lost and what remains is at best a competent appraisal.

But the issue goes deeper than the reticence of scientists.
Judges and ordinary citizens serving on our juries are likewise
beginning to distrust anything but “scientific” evidence. A ballis-
tics expert who testified only that he had seen thousands of bul-
lets and the gun barrels that had fired them, and that there
was absolutely no doubt in his mind that the bullet in question
had come from the gun offered in evidence, would be ridiculed
by the opposing attorney and disregarded by the jury. Instead,
the expert has to talk about the individual marks on the bullet
and the gun and connect them by rules and principles showing
that only the gun in question could so mark the bullet. If he is
experienced in legal proceedings, he will know how to construct
arguments that convince the jury, but he does not tell the court
what he intuitively knows, for he will be evaluated by the jury
on the basis of his “scientific” rationality, not in terms of his
past record and good judgment. As a result some wise but honest
experts are poor witnesses, and lesser authorities who are experi-
enced at producing convincing legal testimony are much sought
after. The same thing happens in psychiatric hearings, medical
proceedings, and other situations where technical experts testify.
Form becomes more important than content.

It is ironic that judges hearing a case will expect expert wit-
nesses to rationalize their testimony, but when rendering a deci-
sion involving conflicting conceptions of what is the central issue
in a case and therefore what is the appropriate guiding prece-
dent, judges will rarely if ever attempt to explain their choice.
They presumably realize that they know more than they can
explain and that ultimately unrationalized intuition must guide
their decision-making, but lawyers and juries seldom accord
witnesses the same prerogative.

Some recent environmental legislation embodies the rational-
istic view that only formal explanations are acceptable. The ecol-
ogist who knows from experience that a proposed dam will
critically damage a certain species of wildlife is credible only
if he can make up a mathematical model entailing that conclu-
sion. The talent for inventing scientific-looking explanations is
becoming more valued than the talent for being right.

Doctors are among the most highly skilled of human experts,
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and we would expect that they would recognize the intuitive
factors in their decision-making. Yet the very nature of their
skill, the fact that it constantly requires them to “play God,”
seems to predispose them to think of their decisions as being
rule-based. Doctors who must decide, for example, whether to
continue an attempt at resuscitation or whether to recommend
a patient for a kidney transplant may be tempted to appeal to
rules of thumb and rational procedures as means of managing
their anxiety.

Doctors are tempted to rationalize their intuitive decisions
not only to justify them to themselves and their peers, but also
in order to explain them to their patients. Yet there is a danger
of overvaluing explicable forms of knowledge if the patient
makes the ultimate decision regarding treatment, based on the
facts furnished by the doctor. While patient involvement cer-
tainly has merit, since the doctor can never know the patient’s
innermost feelings about such matters as life, health, disability,
and pain, the patient’s decision suffers from the fact that the
doctor can never factually explain his innermost feelings about
the preferred therapy based on a lifetime of experiences with
similar cases. Every case is unique, so statistics about likelihoods
of outcomes of various possible treatments based on all previous
cases are of little value. As we have seen, the frequency with
which a particular procedure yielded a particular outcome ob-
served in all previous sufferers from a disease or injury differs
from the statistics for victims of the patient’s age, sex, general
health, mental outlook, and so on, and there is no scientific way
of knowing what reference group should be taken as relevant.
In reality, a patient is viewed by the experienced doctor as a
unique case and treated on the basis of intuitively perceived
similarity with situations previously encountered. That kind of
wisdom, unfortunately, cannot be shared and thereby made the
basis of a patient’s rational decision.

Teaching too is endangered by rationalization. The well-
known aphorism “Those who can’t do, teach” unfairly maligns
many dedicated educators who enjoy teaching but could be suc-
cessful practitioners should they choose. Yet, like most sayings,
it contains more than a grain of truth. The difference between
teaching and doing was strikingly and amusingly demonstrated
in a recent experiment.® It was based on videotapes of six exemp-
lars—five students and one experienced paramedic—as they
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gave cardiopulmonary resuscitation to patients. The videos were
then shown to students, to experienced paramedics, and to CPR
instructors, and each was asked which of the exemplars he would
choose to save his own life in an emergency. The results were
revealing. In the paramedic group, nine out of ten selected the
experienced paramedic. The students chose the paramedic five
out of ten times, and the instructors were correct even less often,
only three times out of ten. The instructors, attempting to find
the paramedic by looking for the individual closely following
the rules they taught, failed to find the expert because an experi-
enced paramedic has passed beyond the rule-following stage!
Teachers of a skill are frequently articulate dispensers of help-
ful facts, procedures, and principles. As such, they may well
hasten the student’s progress from novice to advanced beginner
to competent performer. But if, like expert systems, all they
know are facts and rules of inference, such teachers cannot possi-
bly be successful doers or guides on the way to expertise.
Society must clearly distinguish its members who “know how”
from those that “know that.” It must encourage its children to
cultivate their intuitive capacities in order that they may achieve
expertise, not encourage them to become human logic machines.
And once expertise has been attained, it must be recognized
and valued for what it is. To confuse the common sense, wisdom,
and mature judgment of the expert with today’s artificial intelli-
gence, or to value them less highly, would be a genuine stupidity.



EPILOGUE

RATIONAL ANIMALS
ARE OBSOLETE

SOCRATES STANDS AT THE BEGINNING of our tradition as the
hero of critical, objective thought. There is something to be
said for his sort of detached calculative rationality, but we have
seen that it should be appealed to only by a beginner or an
expert who, having left his domain of experience, can no longer
trust his instincts. Nietzsche, who wrote at what he considered
the end of our Western philosophical tradition, had a view of
Socratic rationality similar to our own. For Nietzsche, Socrates
was not the hero of our culture but its first degenerate, because
Socrates had lost the ability of the nobles to trust intuition. “Hon-
est men do not carry their reasons exposed in this fashion,” Nietz-
sche maintained.

Of course, Socrates’ “rationality” was not a personal sickness.
Athenian society was coping with monumental changes, not the
least of which was the transformation of Athens into an imperial
power. Deliberative reflection no doubt served as a device for
evaluating the continued relevance of traditional ways. But
Socrates seems to have overreacted and tried to call all tra-
ditional wisdom into question. As Nietzsche saw it, Socrates
was symptomatic of a whole culture that, having lost its intu-
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itive sense, desperately sought rules and principles to guide its
actions:

Rationality was at that time divined as a saviour; neither Socrates
nor his “invalids” were free to be rational or not, as they wished—
it was de rigueur, it was their last expedient. The fanaticism with
which the whole of Greek thought throws itself at rationality betrays
a state of emergency: one was in peril, one had only one choice:
either to perish or—be absurdly rational.?

Aristotle, living a generation after Socrates, occupied an am-
biguous position as the opponent of Socrates and Plato. He real-
ized that even if, as Socrates and Plato had believed, people
were continuously following rules, they needed wisdom or judg-
ment in order to apply those rules to particular cases. But Aris-
totle nonetheless seems to have thought that before one could
act, one had to deduce one’s actions from one’s desires and be-
liefs. The basis of action was, for Aristotle, the practical syllogism:
If I desire S and I believe that A will bring about S, then I
should do A. Both Aristotle’s sense of the importance of judgment
and his problem-solving view of intelligence were compatible
with his definition of man as zéion logon echon, the animal
equipped with logos, for when Aristotle thought of man as an
animal equipped with logos, the word logos could still mean
speaking, or the grasping of whole situations, as well as logical
thought. But when logos was translated into Latin as ratio,
meaning “reckoning,” its field of meaning was decisively nar-
rowed. It was a fateful turn for our Western tradition: man,
the logical animal, was now he who counted, he who measured.

All that was necessary to complete the degeneration of reason
into calculation was to equate concepts with collections of objec-
tive features, e.g. house = object, shelter, for man; man = thing,
living, thinking. By the time Hobbes wrote, around 1600, it was
possible to claim not only that reasoning meant reckoning, but
that reckoning was nothing more than “the addition of parcels.”
Four centuries later we so consider reckoning our essence that,
trying to create machines in our own images, we see only the
problem of creating machines that can make millions of infer-
ences per second.

We have gone farther than Aristotle and Hobbes could have
imagined, generalizing Aristotle’s model of intelligence to all
skills, even physical skills, so that even the animal part of man,
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which Aristotle understood as animated, that is, self-moving, is
thought to function by unconscious calculation. At Wright State
University Dr. Roger Glaser and Dr. Jerrold Petrofsky have per-
formed ground-breaking research using computer-controlled
electrical impulses to exercise the paralyzed limbs of spinal-cord-
injured individuals. Yet that amazing therapy is surrounded by
heated debate. Dr. Petrofsky, who apparently believes that
man’s animality is rational, has begun to make extraordinary
claims, predicting that the new techniques will eventually lead
to computer-controlled free walking for the paralyzed—a strik-
ingly literal example of the first-step fallacy that has buttressed
faith in Al for years. He has begun to search for facts about
muscle condition, limb position, and terrain that can be com-
bined by rule to produce flexible walking. In a conversation
with us, Dr. Glaser opposed that optimism as unrealistic and
as cruelly raising false hopes: “We have no idea how the subcon-
scious process that replaces the conscious step-by-step procedure
used by beginners works,” he said. “We might walk by using
sophisticated subconscious rules, but how can we find them?
Or walking might involve some process of direct pattern recogni-
tion followed by a learned response.” ‘

We sometimes work out solutions to problems in our heads,
but we rarely “figure out” how to move our bodies. Thus thinking
looks like a better candidate for computerization than walking.
And if thinking is reckoning, then it is reasonable to expect
that, as futurists have been telling us for years, the computer
as logic machine is the next stage of evolution, which will
someday not only excel us but replace us.

That is an appalling vision of the future. Yet there is no disput-
ing computers have fundamentally and permanently trans-
formed our relationship to our technologies. Soon we shall live
in a world of extraordinarily rich, subtle, and powerful tools.
Will they remain our servants, helping us to our human ends?
Or will they outstrip our humanity, and cast us aside?

To the already anxious swirl of modern life a final element
of anxiety has been added, fear of obsolescence. And anxiety
drives us in several desperate directions. Luddites reappear,
warning not against the improper uses of computers, but against
computers in general, offering, as Jerry Mander did in the “com-
puter-as-poison” issue of the Whole Earth Review, six sweeping
reasons for doing away with computers altogether. Mystics
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emerge too, and warn that technology is cutting us off from
our intuitive capacity to commune directly with other minds
and with nature. Finally, romantics rebel against rationality as
they did in the days of Goethe and return to his old slogan,
“Feeling is everything.”

From our point of view the problem with those reactions is
not that they are wrongheaded but that they are misdirected.
The enemies of technology focus valuable attention on the fact
that computers are no panaceas, but such opposition can at best
slow their proliferation. A real victory over the improper applica-
tion of advanced technology—a victory of mind over machine—
can come only with the recognition that technology has many
proper as well as improper uses and with a widely cultivated
ability to tell the difference. Computers are perhaps the most
powerful, and certainly the most flexible, devices we have yet
built. They have many positive, indeed many wonderful uses.
The question is not how to eliminate them but how to make
the most of their powers.

Likewise, nostalgia for what is being lost is a healthy reaction
to the glorification of the “hacker culture.” The back-to-nature
mystics, however, confuse the supposed dangers of technological
devices with the real danger of the technological mentality. In
opposing computers they miss the real problem: total depen-
dence upon calculative thinking and a loss of respect for the
less formalizable powers of the mind. They fail to see that com-
puters properly used need not alienate us from our everyday
experience-based intuition or whatever other intuitive powers
we may pOSSess.

Of the computer opponents only the romantics are on the
right track. They oppose not technology but technological ration-
ality. But by rejecting all rationality, they fail to see that calcula-
tive rationality is appropriate for beginners and in novel
situations and that deliberative rationality is not opposed to intu-
ition but based upon it. Put in its proper place rational delibera-
tion sharpens intuition.

The question is whether we are going to accept the view
of man as an information processing device, or whether we are
still enough in touch with our pre-Platonic essence to realize
the limits of the computer metaphor. With our mechanical con-
trivances now able to solve certain problems more effectively
than we can, we are being forced to rethink some very old
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and by now very basic elements of our self-image. It is our hope
that the rethinking will lead to a new definition of what we
are, one that values our capacity for involved intuition more
than our ability to be rational animals.

What we do now will determine what sort of society and
what sort of human beings we are to become. We can make
such a decision wisely only if we have some understanding of
what sort of human beings we already are. If we think of our-
selves only as repositories of factual knowledge and of informa-
tion processing procedures, then we understand ourselves as
someday to be surpassed by bigger and faster machines running
bigger and more sophisticated programs. Those who embrace
that limited conception of intelligence welcome the change with
enthusiasm.?

Should we become servants of expert systems and, demanding
of our experts their rules and facts, become careless of the intu-
itive powers that fall outside our stunted vision, we will in one
generation lose our professional expertise and confirm those ex-
pectations. Our children brought up on LOGO and our compe-
tent specialists crammed with procedures will indeed be inferior
to the systems they have been trained to imitate.

But fortunately there are other possibilities. We can use com-
puters to track the vast array of facts and law-governed relation-
ships of our modern technological world, yet continue to nurture
the human expertise that inference engines cannot share by
encouraging learners to pass from rule following to experience-
based intuition. If we do so, our experts will be empowered
by their computer aids to make better use of their wisdom in
grappling with the still unresolved problems of technological
society.

The chips are down, the choice is being made right now.
And at all levels of society computer-type rationality is winning
out. Experts are an endangered species. If we fail to put logic
machines in their proper place, as aids to human beings with
expert intuition, then we shall end up servants supplying data
to our competent machines. Should calculative rationality tri-
umph, no one will notice that something is missing, but now,
while we still know what expert judgment is, let us use that
expert judgment to preserve it.
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